Skip to main content
Log in

Non-equilibrium entropy on stationary Markov processes

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We study the evolution of probability measures under the action of stationary Markov processes by means of a non-equilibrium entropy defined in terms of a convex function ϕ. We prove that the convergence of the non-equilibrium entropy to zero for all measures of finite entropy is independent of ϕ for a wide class of convex functions, including ϕ0(t)=t log t. We also prove that this is equivalent to the convergence of all the densities of a finite norm to a uniform density, on the Orlicz spaces related to ϕ, which include the L p-spaces for p>1. By means of the quadratic function ϕ2(t)=t 2−1, we relate the non-equlibrium entropies defined by the past σ-algebras of a K-dynamical system with the non-equilibrium entropy of its associated irreversible Markov processes converging to equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neveu, J.: Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1970.

    Google Scholar 

  2. Neveu, J.: Martingales a temps discret, Masson, Paris, 1972.

    Google Scholar 

  3. Yosida, K.: Functional Analysis, Springer-Verlag, Berlin, 1968.

    Google Scholar 

  4. Brown, J.: Ergodic Theory and Topological Dynamics, Academic Press, New York, 1976.

    Google Scholar 

  5. Sinai, Y.: Introduction to Ergodic Theory, Princeton University Press, Princeton, 1977.

    Google Scholar 

  6. Walters, P.: An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

    Google Scholar 

  7. Misra, B., Prigogine, I. and Courbage, M.: ‘From Deterministic Dynamics to Probabilistic Descriptions’, Physica 98A (1979), 1–26.

    Google Scholar 

  8. Courbage, M. and Misra, B.: ‘On the Equivalence Between Bernoulli Dynamical Systems and Stochastic Markov Processes’, Physica 104A (1980), 359–377.

    Google Scholar 

  9. Goldstein, S., Misra, B. and Courbage, M.: ‘On Intrinsic Randomness of Dynamical Systems’, J. Stat. Phys. 25, (1981), 111–126.

    Google Scholar 

  10. Courbage, M. and Prigogine, I.: ‘Intrinsic Randomness and Intrinsic Irreversibility in Classical Dynamical Systems’, Preprint ULB, 1982.

  11. Goldstein, S. and Penrose, O.: ‘A Non-equilibrium Entropy for Dynamical Systems’, J. Stat. Phys. 24 (1981), 325–343.

    Google Scholar 

  12. Goldstein, S.: ‘Entropy Increase in Dynamical Systems’, Israel J. Math. 38, (1981), 241–256.

    Google Scholar 

  13. Martinez, S. and Tirapegui, E.: ‘Description of a Class of Markov Processes “Equivalent” to K-shifts’, to appear in J. Stat. Phys. 36 (1984).

  14. Martinez, S. and Tirapegui, E.: ‘Markov Process and Entropy Associated to a Reversible Evolution’ Phys. Lett. 95A (1983), 143–145.

    Google Scholar 

  15. Martinez, S. and Tirapegui, E.: ‘Entropy Functionals Associated to Shifts Dynamical Systems’, Physica 122A (1983), 592–601.

    Google Scholar 

  16. Martinez, S. and Tirapegui, E.: ‘Irreversible Evolution of Dynamical Systems’, Proc. VII Sitges Conf. on Stat. Mechanics, Sept. 1982, Lecture Notes in Physics, Springer-Verlag, New York.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by DIB Universidad de Chile, E19468412.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Servet Martínez, A. Non-equilibrium entropy on stationary Markov processes. Acta Appl Math 3, 221–238 (1985). https://doi.org/10.1007/BF00047329

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047329

AMS (MOS) subject classifications (1980)

Key words

Navigation