Skip to main content
Log in

The semi-infinite strip x≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

For the problem of bending of a semi-infinite strip x≥0, −1≤y≤1, with the sides y=±1 clamped, we give a proof that the end-data

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaarmWu51MyVXgaiuGacqWFgpGzdaWgaaWcbaGaaeiEaiaabIha% aeqaaGqbaOGae4hiaaIaaiikaiaaicdacaGGSaGae4hiaaIaamyEai% aacMcacqGFGaaicqGH9aqpcqGFGaaicaWGMbGaaiikaiaadMhacaGG% PaGaaiilaaqaaiab-z8aMnaaBaaaleaacaqG5bGaaeyEaaqabaGccq% GFGaaicaGGOaGaaGimaiaacYcacqGFGaaicaWG5bGaaiykaiab+bca% Giabg2da9iab+bcaGiaadAgacaGGOaGaamyEaiaacMcacaGGSaaaaa% a!5D6D!\[\begin{array}{l} \phi _{{\rm{xx}}} (0, y) = f(y), \\ \phi _{{\rm{yy}}} (0, y) = f(y), \\ \end{array}\] where f(y), g(y) are ‘arbitrary’ independent functions prescribed on (−1,1), may be expanded as a series of the bi-orthogonal Papkovich-Fadle eigenfunctions for the strip. This represents an advance on the standard work of R. T. C. Smith [6], who proved such an expansion, but under conditions which are often not satisfied in practice. In particular we are able to solve this bi-harmonic boundary value problem when f, g do not satisfy the side conditions

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaacaWGMbGaaiikaiabgglaXkaaigdacaGGPaqedmvETj2BSbac% faGae8hiaaIaeyypa0Jae8hiaaIaamOzamaaCaaaleqabaGaai4jaa% aakiab-bcaGiaacIcacqGHXcqScaaIXaGaaiykaiab-bcaGiabg2da% 9iab-bcaGiaaicdacaGGSaaabaGaam4zaiaacIcacqGHXcqScaaIXa% Gaaiykaiab-bcaGiabg2da9iab-bcaGiaadEgadaahaaWcbeqaaiaa% cEcaaaGccqWFGaaicaGGOaGaeyySaeRaaGymaiaacMcacqWFGaaicq% GH9aqpcqWFGaaicaaIWaGaaiilaaaaaa!6222!\[\begin{array}{l} f( \pm 1) = f^' ( \pm 1) = 0, \\ g( \pm 1) = g^' ( \pm 1) = 0, \\ \end{array}\]and when the ‘conditions of consistency’

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qmaeaacaWGNbGaaiikaiaadMhacaGGPaqedmvETj2BSbacfaGa% e8hiaaIaamizaiaadMhacqWFGaaicqWF9aqpcqWFGaaidaWdXaqaai% aadMhacaWGNbGaaiikaiaadMhacaGGPaGae8hiaaIaamizaiaadMha% cqWFGaaicqGH9aqpcqWFGaaicaaIWaaaleaacqWFsislcqWFXaqmae% aacqWFXaqma0Gaey4kIipaaSqaaiabgkHiTiaaigdaaeaacaaIXaaa% niabgUIiYdaaaa!5A1B!\[\int_{ - 1}^1 {g(y) dy = \int_{ - 1}^1 {yg(y) dy = 0} } \]are not satisfied.

The present completeness proof thus answers questions raised recently (in the mathematically equivalent context of Stokes flow) by Joseph [3], and Joseph and Sturges [5], who showed that if the side conditions (A), (B) are relaxed then the corresponding eigenfunction series may still converge; but they left open the more difficult question of whether these series still converge to the data.

The method of proof used here also succeeds in proving a corresponding completeness theorem for the Williams eigenfunctions for the wedge with the data.

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaadaabciqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaa% daqadiqaamaalaaabaGaaGymaaqaaiaadkhaaaqedmvETj2BSbacfi% Gae8NXdygacaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaamOCaiab% g2da9iaaigdaaeqaaGqbaOGae4hiaaIaeyypa0Jae4hiaaIaamOzai% aacIcacqaH4oqCcaGGPaGaaiilaaqaamaaeiGabaWaaSaaaeaacqGH% ciITdaahaaWcbeqaaiaaikdaaaGccqaHgpGzaeaacqGHciITcqaH4o% qCdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaceaadaWcaaqaaiaaigda% aeaacaWGYbaaaiab-z8aMbGaayjkaiaawMcaaaGaayjcSdWaaSbaaS% qaaiaadkhacqGH9aqpcaaIXaaabeaakiab+bcaGiabg2da9iab+bca% GiaadEgacaGGOaGaeqiUdeNaaiykaiaacYcaaaaa!6B9C!\[\begin{array}{l} \left. {\frac{\partial }{{\partial r}}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = f(\theta ), \\ \left. {\frac{{\partial ^2 \phi }}{{\partial \theta ^2 }}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = g(\theta ), \\ \end{array}\]prescribed on −α<θ<α, (where 2α is the wedge angle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T. M., Mathematical Analysis, Addison-Wesley, 1957.

  2. Gregory, R. D., Green's functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge. J. of Elast. 9 (1979) 283.

    Google Scholar 

  3. Joseph, D. D., The convergence of bi-orthogonal series for bi-harmonic and Stokes flow edge problems, Part I. S.I.A.M. J. Appl. Math. 33 (1977) 337–347.

    Google Scholar 

  4. Joseph, D. D. and Sturges, L., The free surface on a liquid filling a trench heated from its side. J. Fluid Mech. 69 (1975) 565–589.

    Google Scholar 

  5. Joseph, D. D. and Sturges, L. The convergence of bi-orthogonal series for bi-harmonic and Stokes flow edge problems, Part II. S.I.A.M. J. Appl. Math. 34 (1978) 7–26.

    Google Scholar 

  6. Smith, R. T. C., The bending of a semi-infinite strip. Austral. J. Sci. Res. A 5 (1952) 227–237.

    Google Scholar 

  7. Joseph, D. D., Private communication. To appear in the proceedings of the symposium “Trends in applications of pure mathematics to mechanics” held in Kozubnik, Poland in September 1977. Pitman Publishing, London.

Download references

Authors

Additional information

Department of Mathematics, University of Manchester

On leave of absence at the University of British Columbia, Vancouver, B.C. Canada, during 1977–79. This work was supported in part by N.R.C. grants Nos. A 9259 and A9117.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, R.D. The semi-infinite strip x≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed. J Elasticity 10, 57–80 (1980). https://doi.org/10.1007/BF00043135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043135

Keywords

Navigation