Skip to main content
Log in

AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein

  • Regular Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MBP:

maltose binding protein

PCR:

polymerase chain reaction

Stress70c:

the cytosolic member of the 70 kDA family of stress-related proteins

References

  1. Baykov AA, Evtushenko OA, Avaeva SM: A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171: 266–270 (1988).

    PubMed  Google Scholar 

  2. Becker J, Craig EA: Heat shock proteins as molecular chaperones. Eur J Biochem 219: 11–23 (1994).

    PubMed  Google Scholar 

  3. Bork P, Sander C, Valencia A: A module of the DnaJ heat shock proteins found in malaria parasites. Trends Biochem Sci 17: 129 (1992).

    Article  PubMed  Google Scholar 

  4. Bradford MM: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  5. Caplan AJ, Cyr DM, Douglas MG: Eukaryotic homologues of Escherichia colidnaJ: a diverse protein family that functions with HSP70 stress proteins. Mol Biol Cell 4: 555–563 (1993).

    PubMed  Google Scholar 

  6. Caplan AJ, Douglas G: Characterization of YDJ1: a yeast homologue of the bacterial DnaJ protein. J Cell Biol 114: 609–621 (1991).

    Article  PubMed  Google Scholar 

  7. Clarke S: Protein isoprenylation and methylation at carboxylterminal cysteine residues. Annu Rev Biochem 61: 355–386 (1992).

    Google Scholar 

  8. Cyr DM, Lu X, Douglas MG: Regulation of eukaryotic hsp70 function by a dnaJ homologue. J Biol Chem 267: 20927–20931 (1992).

    PubMed  Google Scholar 

  9. Gavel Y, von Heijne G: Cleavage-site motifs in mitochondrial targeting peptides. Prot Enging 4: 33–37 (1990).

    Google Scholar 

  10. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE: A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192: 112–116 (1991).

    PubMed  Google Scholar 

  11. Georgopoulos C, Welch WJ: Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9: 601–634 (1993).

    PubMed  Google Scholar 

  12. Gupta RS, Golding GB: Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573–582 (1993).

    Article  PubMed  Google Scholar 

  13. Hendrick JP, Hartl F-U: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384 (1993).

    Article  PubMed  Google Scholar 

  14. Hendrick JP, Langer T, Davis TA, Hartl F-U, Wiedmann M: Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Aca Sci USA 90: 10216–10220 (1993).

    Google Scholar 

  15. von Heijne G: Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335–1342 (1986).

    PubMed  Google Scholar 

  16. von Heijne G, Stepuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast peptides. Eur J Biochem 180: 535–545 (1989).

    PubMed  Google Scholar 

  17. Kang PJ, Craig EA: Identification and characterization of a newEscherichia coli gene that is a dosage-dependent suppressor of adnaK deletion mutant. J Bact 172: 2055–2064 (1990).

    PubMed  Google Scholar 

  18. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl F-U: Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 683–689 (1992).

    Article  PubMed  Google Scholar 

  19. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M:Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88: 2874–2878 (1991).

    PubMed  Google Scholar 

  20. Liberek K, Skowyra D, Zylicz M, Johnson C, Georgopoulos C: TheEscherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J Biol Chem 266: 14491–14496 (1991).

    PubMed  Google Scholar 

  21. Lindquist S: The heat shock response. Annu Rev Biochem 55: 1151–1191 (1986).

    Article  PubMed  Google Scholar 

  22. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual, vols 1–3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  23. McNeil PH, Thomas DR: The effect of carnitine on palmitate oxidation by pea cotyledon mitochondria. J Exp Bot 27: 1163–1180 (1976).

    Google Scholar 

  24. Miernyk JA: Extracellular secretion of acid hydrolases by maize endosperm cells grown in liquid medium. J Plant Physiol 129: 19–32 (1987).

    Google Scholar 

  25. Miernyk JA, Duck NB, ShattersJr RG, Folk WR: Hsc70 can act as a molecular chaperone during the membrane translocation of a plant secretory protein precursor. Plant Cell 4: 821–829 (1992).

    Google Scholar 

  26. Ohtsuka K: Cloning of a cDNA for heat shock protein hsp40, a human homologue of bacterial DnaJ. Biochem Biophys Res Commun 197: 235–240 (1993).

    Article  PubMed  Google Scholar 

  27. Palleros DR: DnaK ATPase activity revisited. FEBS Lett 36: 124–128 (1993).

    Article  Google Scholar 

  28. Preisig-Muller R, Kindl H: Plant dnaJ homologue: molecular cloning, bacterial expression, and expression analysis in tissues of cucumber seedlings. Arch Biochem Biophys 305: 30–37 (1993).

    Article  PubMed  Google Scholar 

  29. Preisig-Muller R, Muster G, Kindl H: Heat shock increases the amount of prenylated DnaJ protein at membranes of glyoxysomes. Eur J Biochem 219: 57–63 (1994).

    PubMed  Google Scholar 

  30. Riedell WE, Miernyk JA: Glycoprotein synthesis in maize endosperm cells. The nucleoside diphosphate-sugar: dolicholphosphate glycosyltransferases. Plant Physiol 87: 420–426 (1988).

    Google Scholar 

  31. Rowley N, Prip-Buus C, Westerman B, Brown C, Schwarz E, Barrell B, Neupert W: Mdjlp, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77: 249–259 (1994).

    Article  PubMed  Google Scholar 

  32. Silver PA, Way JC: Eukaryotic DnaJ homologs and the specificity of Hsp70 action. Cell 74: 5–6 (1993).

    Article  PubMed  Google Scholar 

  33. Straus D, Walter W, Gross CA: Dnak, DnaJ, and GrpE heat shock proteins negatively regulate heat-shock gene expression by controlling the synthesis and stability of sigma 32. Genes Devel 4: 2202–2209 (1990).

    PubMed  Google Scholar 

  34. Thomas DR, Noh Hj Jalil M, Cooke RJ, Yong BSC, Ariffin A, McNeil PH, Wood C: The synthesis of palmitoylcarnitine by etio-chloroplasts of greening barley leaves. Planta 154: 60–65 (1982).

    Google Scholar 

  35. Wall D, Zylicz M, Georgopoulos C: The NH2-terminal 108 amino acids of theEscherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 269: 5446 (1994).

    PubMed  Google Scholar 

  36. Welch W, Feramisco JR: Rapid purification of mammalian 70 000-dalton stress proteins: affinity of the proteins for nucleotides. Mol Cell Biol 5: 1229–1237 (1985).

    PubMed  Google Scholar 

  37. Zhou R, Hayman GT, Kroczynska B, Miernyk JA:AtJ2, anArabidopsis homologue ofEscherichia coli dnaJ. Plant Physiol 108: 821–822 (1995).

    Article  PubMed  Google Scholar 

  38. Zhou R, Miernyk JA: ATPase activities of the maize Stress70 molecular chaperone proteins. J Biol Chem, in press (1996).

  39. Zhu J-K, Shi J, Bressan RA, Hasegawa PM: Expression of anAtriplex numularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 5: 341–349 (1993).

    Article  PubMed  Google Scholar 

  40. Zhu J-K, Bressan RA, Hasegawa PM: Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90: 8557–8561 (1993).

    PubMed  Google Scholar 

  41. Zylicz M, Yamamoto T, McKittrick N, Sell S, Georgopoulos C: Purification and properties of the dnaJ replication protein ofEscherichia coli. J Biol Chem 260: 7591–7598 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroczynska, B., Zhou, R., Wood, C. et al. AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein. Plant Mol Biol 31, 619–629 (1996). https://doi.org/10.1007/BF00042234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042234

Key words

Navigation