Skip to main content
Log in

An alternative approach for gene transfer in trees using wild-typeAgrobacterium strains

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Micropropagated shoots of three forest tree species, poplar (Populus tremula × P.alba), wild cherry (Prunus avium L.) and walnut (Juglans nigra × J. regia), were inoculated each with six different wild-typeAgrobacterium strains. Poplar and wild cherry developed tumors that grew hormone-independently, whereas on walnut, gall formation was weak. On poplar and wild cherry, tumors induced by nopaline strains developed spontaneously shoots that had a normal phenotype and did not carry oncogenic T-DNA. From these observations, we have established a co-inoculation method to transform plants, using poplar as an experimental model. The method is based on inoculation of stem internodes with anAgrobacterium suspension containing both an oncogenic strain that induces shoot differentiation and a disarmed strain that provides the suitable genes in a binary vector. We used the vector pBI121 carryingneo (kanamycin resistance) anduidA (β-glucuronidase) genes to facilitate early selection and screening. Poplar plants derived from kanamycin-resistant shoots that did not carry oncogenic T-DNA, were shown to contain and to expressneo anduidA genes. These results suggest that wild-typeAgrobacterium strains that induce shoot formation directly from tumors can be used as a general tool for gene transfer, avoiding difficult regeneration procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja MR: Gene transfer in woody plants: perspectives and limitations. In: Ahuja MR (ed) Somatic Cell Genetics of Woody Plants, pp. 55–63. Kluwer Academic Publishers, Dordrecht, Netherlands (1988).

    Google Scholar 

  2. Ahuja MR: Gene transfer in forest trees. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, pp. 25–41. Plenum Press, New York (1988).

    Google Scholar 

  3. Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW: Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80: 407–411 (1983).

    Google Scholar 

  4. Bevan MW: BinaryAgrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).

    Google Scholar 

  5. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Google Scholar 

  6. Cheliak WM, Rogers DL: Integrating biotechnology into tree improvement programs. Can J For Res 20: 452–463 (1990).

    Google Scholar 

  7. Chun YW, Klopfenstein NB, McNabb HS, Hall RB: Transformation ofPopulus species by anAgrobacterium binary vector system. J Korean For Soc 77: 199–207 (1988).

    Google Scholar 

  8. Coleman GD, Ernst SG:In vitro shoot regeneration ofPopulus deltoides: effect of cytokinin and genotype. Plant Cell Rep 8: 459–462 (1989).

    Google Scholar 

  9. De Block M: Factors influencing the tissue culture and theAgrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93: 1110–1116 (1990).

    Google Scholar 

  10. De Cleene M, De Ley J: The host range of crown gall. Bot Rev 42: 389–466 (1976).

    Google Scholar 

  11. Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  12. Depicker A, De Wilde M, De Vos G, De Vos R, Van Montagu M, Schell J: Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3: 193–211 (1980).

    Google Scholar 

  13. Driver JA, Kuniyuki AH:In vitro propagation of paradox walnut rootstock. HortScience 19: 507–509 (1984).

    Google Scholar 

  14. Ellis D, Roberts D, Sutton B, Lazaroff W, Webb D, Flinn B: Transformation of white spruce and other conifer species byAgrobacterium tumefaciens. Plant Cell Rep 8: 16–20 (1989).

    Google Scholar 

  15. Fillatti JJ, Sellmer JC, McCown BH, Haissig BE, Comai L:Agrobacterium mediated transformation and regeneration ofPopulus. Mol Gen Genet 206: 192–199 (1987).

    Google Scholar 

  16. Graham J, McNicol RJ, Kumar A: Use of the GUS gene as a selectable marker forAgrobacterium-mediated transformation ofRubus. Plant Cell Tissue Organ Culture 20: 35–39 (1990).

    Google Scholar 

  17. Haissig BE, Nelson ND, Kidd GH: Trends in the use of tissue culture in forest improvement. Bio/technology 5: 52–59 (1987).

    Google Scholar 

  18. Holsters M, de Waele D, Depicker A, Messens E, Van Montagu M, Schell J: Transfection and transformation ofAgrobacterium tumefaciens. Mol Gen Genet 163: 181–187 (1978).

    Google Scholar 

  19. James DJ, Passey AJ, Predieri S, Rugini E: Regeneration and transformation of apple plants using wild-type and engineered plasmids inAgrobacterium spp. In: Ahuja MR (ed) Somatic Cell Genetics of Woody Plants, pp. 65–71. Kluwer Academic Publishers, Dordrecht, Netherlands (1988).

    Google Scholar 

  20. James DJ, Passey AJ, Barbara DJ, Bevan M: Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7: 658–661 (1989).

    Google Scholar 

  21. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    Google Scholar 

  22. Koncz C, Schell J: The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type ofAgrobacterium binary vector. Mol Gen Genet 204: 383–396 (1986).

    Google Scholar 

  23. Lemoine M: Amélioration des peupliers de la section Leuce sur sols hydromorphes. Ph.d. thesis, Université de Nancy I, Nancy, France (1973).

  24. Mackay F, Séguin A, Lalonde M: Genetic transformation of 9in vitro clones ofAlnus andBetula byAgrobacterium tumefaciens. Plant Cell Rep 7: 229–232 (1988).

    Google Scholar 

  25. McDonnell RE, Clark RD, Smith WA, Hinchee MA: A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissue. Plant Mol Biol Rep 5: 380–386 (1987).

    Google Scholar 

  26. McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandekar AM:Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/technology 6: 800–804 (1988).

    Google Scholar 

  27. Michel MF, Brasileiro ACM, Depierreux C, Otten L, Delmotte F, Jouanin L: Identification of differentAgrobacterium strains isolated from the same forest nursery. Appl Environ Microbiol 56: 3537–3545 (1990).

    Google Scholar 

  28. Moore LW, Warren G, Strobel G: Involvement of a plasmid in the hairy root disease of plants caused byAgrobacterium rhizogenes. Plasmid 2: 617–626 (1979).

    Google Scholar 

  29. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  30. Olsen WL: Molecular biology in forestry research: a review. In: Valentine A (ed) Forest and Crop Biotechnology: Progress and Prospects, pp. 315–334. Springer-Verlag, New York (1988).

    Google Scholar 

  31. Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoort RA: Crown gall plant tumors of abnormal morphology, induced byAgrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14: 33–50 (1981).

    Google Scholar 

  32. Riemenschneider DE: Susceptibility of intra- and inter-specific hybrid poplars toAgrobacterium tumefaciens strains C58. Phytopathology 80: 1099–1102 (1990).

    Google Scholar 

  33. Riffaud JL, Cornu D: Utilisation de la culturein vitro pour la multiplication de merisiers adultes (Prunus avium L.) sélectionnés en forêt. Agronomie 1: 633–640 (1981).

    Google Scholar 

  34. Rutledge CB, Douglas GC: Culture of meristem tips and micropropagation of 12 commercial clones of poplarin-vitro. Physiol Plant 72: 367–373 (1988).

    Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  36. Sciaky D, Montoya AL, Chilton MD: Fingerprints ofAgrobacterium Ti plasmids. Plasmid 1: 238–253 (1978).

    Google Scholar 

  37. Sellmer JC, McCown BH: Transformation inPopulus spp. In: Bajaj YPS (ed) Plant Protoplasts and Genetic Engineering II, pp. 155–172. Springer-Verlag, Berlin/Heidelberg (1989).

    Google Scholar 

  38. Stomp AM, Loopstra C, Chilton WS, Sederoff RR, Moore LW: Extended host range ofAgrobacterium tumefaciens in the genusPinus. Plant Physiol 92: 1226–1232 (1990).

    Google Scholar 

  39. Tepfer M, Casse-Delbart F:Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci: 24–28 (1987).

  40. Torrey JG: Biotechnology applied to the improvement of underground systems of woody plants. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants, pp. 1–21. Plenum Press, New York (1988).

    Google Scholar 

  41. Vahala T, Stabel P, Eriksson T: Genetic transformation of willows (Salix spp.) byAgrobacterium tumefaciens. Plant Cell Rep 8: 55–58 (1989).

    Google Scholar 

  42. Vardi A, Bleichman S, Aviv D: Genetic transformation ofCitrus protoplasts and regeneration of transgenic plants. Plant Sci 69: 199–206 (1990).

    Google Scholar 

  43. Weiler EW, Schröder J: Hormone genes and crown gall disease. TIBS 12: 271–275 (1987).

    Google Scholar 

  44. Wullems GJ, Molendijk L, Ooms G, Schilperoort RA: Retention of tumor markers in F1 progeny plants fromin vitro induced octopine and nopaline tumor tissues. Cell 24: 719–727 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to the late Marie-France Michel who initiated the poplar biotechnology project at INRA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasileiro, A.C.M., Leplé, JC., Muzzin, J. et al. An alternative approach for gene transfer in trees using wild-typeAgrobacterium strains. Plant Mol Biol 17, 441–452 (1991). https://doi.org/10.1007/BF00040638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040638

Key words

Navigation