Skip to main content
Log in

A divergent plastid genome inConopholis americana, an achlorophyllous parasitic plant

  • Update Section
  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have used heterologous probes to investigate the degree of sequence conservation in the plastid genome ofConopholis americana, a totally achlorophyllous angiosperm which exists as a root parasite on red oaks. AlthoughConopholis is completely nonphotosynthetic, it retains a plastid genome in which certain regions, including that which contains the ribosomal RNA genes, are highly conserved. Other regions, including those containing the genes for numerous photosynthesis proteins, are either absent or highly divergent. We also find that the 16S and 23S ribosomal genes of theConopholis plastid are transcribed and processed, implying a potentially functional genetic apparatus. These results are in agreement with findings reported recently for a related root parasite,Epifagus virginiana (de Pamphilis and Palmer, 1990). Furthermore, the plastid genome is maintained in high copy number in fruit tissue, whereas mature seeds have an approximately 10-fold lower copy number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG, Struhl K: Current Protocols in Molecular Biology. John Wiley and Sons, New York (1987).

    Google Scholar 

  2. Baldauf SL, Palmer JD: Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265 (1990).

    Google Scholar 

  3. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523 (1979).

    Google Scholar 

  4. Davies LG, Dibner MD, Battey JF: Basic Methods in Molecular Biology, p. 143. Elsevier, New York (1986).

    Google Scholar 

  5. de Pamphilis CW, Palmer JD: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339 (1990).

    Google Scholar 

  6. Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15 (1987).

    Google Scholar 

  7. Fourney RM, Miyakoshi J, Day RS, Paterson MC: Northern blotting: Efficient RNA staining and transfer. Focus 10: 5–7 (1988).

    Google Scholar 

  8. Hiratsuka J, Shimada H, Whittier RF, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).

    Google Scholar 

  9. Jansen RK, Palmer JD: Chloroplast DNA from lettuce andBarnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr Genet 11: 553–564 (1987).

    Google Scholar 

  10. Kirk JTO, Tilney-Bassett RAE: The Plastids—Their Chemistry, Structure, Growth, and Inheritance. Elsevier/North Holland Biomedical Press, New York (1978).

    Google Scholar 

  11. Kolodner R, Tewari KK: Molecular size and conformation of chloroplast deoxyribonucleic acid from pea leaves. J Biol Chem 247: 6355–6364 (1975).

    Google Scholar 

  12. Kolodner R, Tewari KK: Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45 (1979).

    Google Scholar 

  13. Kossel H, Natt E, Strittmatter G, Fritzsche E, Gozdzicka-Josefiak A, Przbyl D: Structure and expression of rRNA operons from plastids of higher plants. In: van Vloten-Doting L, Groot GSP, Hall TC (eds), Molecular Form and Function of the Plastid Genome, pp. 183–198. Plenum Press, New York (1985).

    Google Scholar 

  14. Kuijt J: The Biology of Parasitic Flowering Plants. University of California Press, Berkeley (1969).

    Google Scholar 

  15. Leaver CJ: Molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem J 135: 237–240 (1973).

    Google Scholar 

  16. Lonsdale D, Hodge T, Howe C, Stern D: Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34: 1007–1014 (1983).

    Google Scholar 

  17. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  18. Margulis L: Origin of Eukaryotic Cells. Yale University Press, New Haven, CT (1970).

    Google Scholar 

  19. Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325 (1980).

    Google Scholar 

  20. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature 322: 572–574 (1986).

    Google Scholar 

  21. Palmer JD: Comparative organization of chloroplast genomes. Ann Rev Genet 19: 325–354 (1985).

    Google Scholar 

  22. Palmer JD, Nugent JM, Herbon LA: Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84: 769–773 (1987).

    Google Scholar 

  23. Palmer JD, Thompson WF: Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78: 5533–5537 (1981).

    Google Scholar 

  24. Parish JH, Kirby KS: Reagents which reduce interactions between ribosomal RNA and rapidly labelled RNA from rat liver. Biochim Biophys Acta 129: 554–562 (1966).

    Google Scholar 

  25. Rigby PWJ, Dieckmann M, Rhodes C, Berg P: Labelling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237–251 (1977).

    Google Scholar 

  26. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  27. Stern D, Lonsdale D: Mitochondrial and chloroplast genomes of maize have a 12 kb sequence in common. Nature 229: 698–702 (1982).

    Google Scholar 

  28. Sugiura M: The chloroplast chromosomes in land plants. Ann Rev Cell Biol 5: 51–70 (1989).

    Google Scholar 

  29. Timmis JN, Scott NS: Sequence homology between spinach nuclear and chloroplast genomes. Nature 305: 65–67 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimpee, C.F., Wrobel, R.L. & Garvin, D.K. A divergent plastid genome inConopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17, 161–166 (1991). https://doi.org/10.1007/BF00036822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036822

Key words

Navigation