Skip to main content
Log in

The scientific basis of bioassays

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The ultimate goal of ecotoxicological testing is to predict ecological effects of chemicals and other stressors. Since damage should be avoided rather than corrected after it occurs, the predictive value of such tests is crucial. A modest base of evidence shows that, in some cases, extrapolations from bioassays on one species to another species are reasonably accurate and, in other cases, misleading. Extrapolations from laboratory bioassays to response in natural systems at the population level are effective if the environmental realism of the bioassay is sufficiently high. When laboratory systems are poor simulations of natural systems, gross extrapolation errors may result. The problem of extrapolating among levels of biological organization has not been given the serious attention it deserves, and currently used methodologies have been chosen for reasons other than scientific validity. As the level of biological organization increases, new properties are added (e.g., nutrient cycling, energy transfer) that are not readily apparent at the lower levels. The measured responses (or end points) will not be the same at all levels of biological organization, making the validation of predictions difficult. Evidence indicates that responses of ecologically complex laboratory systems correspond to predicted and documented patterns in stressed ecosystems. The difficulties of improving the ecological evidence used to predict adverse effects are not insurmountable since the essence of predictive capability is the determination of effects thresholds at all levels of organization. The dilemma between basing predictive schemes on either traditional or holistic methods can only be solved by facing scientific and ethical questions regarding the adequacy of evidence used to make decisions of environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyers, R. J., 1963. The metabolism of twelve aquatic laboratory microecosystems. Ecol. Monogr. 33: 281–306.

    Google Scholar 

  • Biswas, H. & B. A. Bell, 1984. A method for establishing site-specific stream design flows for wasteload allocation. J. Wat. Pollut. Cont. Fed. 56: 1123–1130.

    Google Scholar 

  • Bormann, F. H. & G. E. Likens, 1970. Nutrient cycles of an ecosystem. Sci. Am. 220: 92–101.

    Google Scholar 

  • Buikema, A. L., Jr., 1983. Inter- and intralaboratory variation in conducting static acute toxicity tests with Daphnia magna exposed to effluents and reference toxicants. American Petroleum Institute Publication 4362, Washington, D.C. 32 pp.

    Google Scholar 

  • Cairns, J., Jr., 1982. Predictive and reactive systems for ecosystem quality control. In M. B. Fiering (ed.), Scientific Basis of Water-Resource Management. Geophysics Research Board, National Academy Press, Washington, D.C.: 72–84.

    Google Scholar 

  • Cairns, J., Jr. (ed.), 1985. Multispecies Toxicity Testing. Pergamon Press, N.Y., 261 pp.

    Google Scholar 

  • Cairns, J., Jr. (ed.), 1986. Community Toxicity Testing, STP 920. American Society for Testing and Materials, Philadelphia, Pa., 350 pp.

    Google Scholar 

  • Cairns, J., Jr. (ed.), 1989. Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals, STP 988. American Society for Testing and Materials, Philadelphia, Pa. 242 pp.

    Google Scholar 

  • Cairns, J., Jr. & D. S. Cherry, 1983. A site-specific field and laboratory evaluation of fish and Asiatic clam population responses to coal fired power plant discharges. Water Sci. Tech. 15: 10–37.

    Google Scholar 

  • Cairns, J., Jr. & E. P. Smith, 1989. Developing a statistic support system for environmental hazard assessment. Hydrobiologia. In press.

  • Cairns, J., Jr., J. S. Crossman, K. L. Dickson & E. E. Herricks, 1971. The recovery of damaged streams. Assoc. Southeast. Biol. Bull. 18: 79–106.

    Google Scholar 

  • Cherrett, J. M., 1988. Ecological concepts — a survey of the views of the members of the British Ecological Society. Biologist 35: 64–66.

    Google Scholar 

  • Crossland, N. O. & C. J. M. Wolff, 1985. Fate and biological effects of pentachlorophenol in outdoor ponds. Envir. Toxicol. Chem. 4: 73–86.

    Google Scholar 

  • deNoyelles, F., Jr. & W. D. Kettle, 1985. Experimental ponds for evaluating bioassay predictions. In T. P. Boyle (ed.), Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in the Environment, STP 865. American Society for Testing and Materials, Philadelphia, Pa.: 91–103.

    Google Scholar 

  • Doherty, F. G., 1983. Interspecies correlations of acute aquatic median lethal concentrations for four standard testing species. Envir. Sci. Technol. 17: 661–665.

    Google Scholar 

  • Doudoroff, P., B. G. Anderson, G. E. Burdick, P. S. Galtsoff, R. Patrick, E. R. Strong, E. W. Surber & W. M. van Horn, 1951. Bio-assay for the evaluation of acute toxicity of industrial wastes to fish. Sewage Ind. Wastes 23: 1380–1397.

    Google Scholar 

  • Eaton, J., J. Arthur, R. Hermanutz, R. Kiefer, L. Mueller, R. Anderson, R. Erikson, B. Nording, J. Rogers & H. Pritchard, 1985. Biological effects of continuous and intermittent dosing of outdoor experimental streams with chlorpyrifos. In R. C. Bahner & D. J. Hansen (eds.), Aquatic Toxicology and Hazard Assessment: Eighth Symposium, STP 891. American Society for Testing and Materials, Philadelphia, Pa.: 85–118.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and Mineral Cycling. Academic Press, N.Y., 225 pp.

    Google Scholar 

  • Geckler, J. R., W. B. Horning, T. M. Neiheisel, Q. H. Pickering, E. L. Robinson & C. E. Stephan, 1976. Validity of laboratory tests for predicting copper toxicity in streams, EPA 600/3–76–116. National Technical Information Service, Springfield, Va.

    Google Scholar 

  • Giddings, J. M., P. J. Franco, R. M. Cushman, L. A. Hook, G. R. Southworth & A. J. Stewart, 1984. Effects of chronic exposure to coal-derived oil on freshwater ecosystems: II. experimental ponds. Environ. Toxicol. Chem. 3: 465–488.

    Google Scholar 

  • Giesy, J. P. & P. M. Allred, 1985. Replicability of aquatic multispecies test systems. In J. Cairns, Jr. (ed.), Multispecies Toxicity Testing, Pergamon Press, N.Y.: 187–247.

    Google Scholar 

  • Golley, F. B., 1986. Deep ecology from the perspective of environmental science. Envir. Ethics 9: 45–55.

    Google Scholar 

  • Green, R. H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. J. Wiley & Sons, N.Y., 257 pp.

    Google Scholar 

  • Harper, J. L., 1982. Beyond description. In E. J. Newman (ed.), The Plant Community as a Working Mechanism. Blackwell Scientific Publishers, London: 11–25.

    Google Scholar 

  • Hart, W. B., P. Doudoroff & J. Greenbank, 1945. The Evaluation of the Toxicity of Industrial Wastes, Chemicals and Other Substances to Freshwater Fishes. Waste Control Laboratory, Atlantic Refining Co., Philadelphia, Pa. 376 pp.

    Google Scholar 

  • Henebry, M. S. & J. Cairns, Jr., 1984. Protozoan colonization rates and trophic status of some freshwater wetland lakes. J. Protozool. 31: 456–467.

    Google Scholar 

  • Horning, W. B. & C. I. Weber, 1985. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. EPA/600/4–85–014. United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Oh., 162 pp.

    Google Scholar 

  • Kenaga, E. E., 1978. Test organisms and methods useful for early assessment if acute toxicity of chemicals. Envir. Sci. Technol. 12: 1322–1329.

    Google Scholar 

  • Lemons, J., 1985. Ecological stress phenomena and holistic environmental ethics — a viewpoint. Int. J. envir. Stud. 27: 9–30.

    Google Scholar 

  • Macek, K. J., 1982. Aquatic toxicology: anarchy or democracy? In J. G. Pearson, R. B. Foster & W. E. Bishop (eds.), Aquatic Toxicology and Hazard Assessment. 5th Conference. American Society for Testing and Materials, Philadelphia, Pa.: 3–8.

    Google Scholar 

  • Maugh, T. H., 1978. Chemicals: how many are there? Science 199: 162.

    Google Scholar 

  • Mayer, F. L. & M. R. Ellersieck, 1986. Manual for Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. U.S. Department of the Interior, Fish, and Wildlife Service, Resource Publication 160, Washington, D.C. 505 pp.

    Google Scholar 

  • Mount, D. I., N. A. Thomas, T. J. Norberg, M. T. Barbour, T. H. Rousch & W. F. Brandes. 1984. Effluent and ambient toxicity testing and instream community response on the Ottowa River, Lima, Ohio, EPA 600/3–84–080. National Technical Information Service, Springfield, Va. 85 pp.

    Google Scholar 

  • National Research Council, 1981. Testing for the Effects of Chemicals on Ecosystems. National Academy Press, Washington, D.C. 103 pp.

    Google Scholar 

  • National Research Council, 1986. Ecological Knowledge and Environmental Problem-Solving: Concepts and Case Studies. National Academy Press, Washington, D.C., 338 pp.

    Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.

    Google Scholar 

  • Odum, E. P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.

    Google Scholar 

  • Perez, K. T. & G. E. Morrison, 1985. Environmental assessment from simple test systems and a microcosm: comparisons of monetary costs. In J. Cairns, Jr. (ed.), Multispecies Toxicity Testing. Pergamon Press, N.Y.: 89–95.

    Google Scholar 

  • Pratt, J. R., B. R. Niederlehner, N. J. Bowers & J. Cairns, Jr., 1987. Effects of zinc on freshwater microbial communities. In S. E. Lindberg & T. C. Hutchinson (eds), International Conference on Heavy Metals in the Environment, Vol. 2. CEP Consultants Ltd., Edinburgh: 324–326.

    Google Scholar 

  • Pratt, J. R., N. J. Bowers, B. R. Niederlehner & J. Cairns, Jr., 1988. Effects of atrazine on freshwater microbial communities. Arch. Envir. Contam. Toxicol. 17: 449–457.

    Google Scholar 

  • Sayler, G. S., M. Puziss & M. Silver, 1979. Alkaline phosphatase assay for freshwater sediments: application to perturbed sediment systems. Appl. Envir. Microbiol. 38: 922–927.

    Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. Aquat. Sci. 44 (Suppl. 1): 6–25.

    Google Scholar 

  • Slooff, W., 1983. Biological Effects of Chemical Pollutants in the Aquatic Environment and their Indicative Value. Dissertation, University of Utrecht, The Netherlands, 191 pp.

    Google Scholar 

  • Sokal, R. & F. Rohlf, 1981. Biometry. W. H. Freeman & Co., N.Y., 859 pp.

    Google Scholar 

  • Stay, F. S., D. P. Larsen, A. Kato & C. M. Rohm, 1985. Effects of atrazine on community level responses in Taub microcosms. In T. P. Boyle (ed.), Validation and Prediction of Laboratory Methods for Assessing the Fate and Effect of Contaminants in Aquatic Ecosystems, STP 865. American Society for Testing and Materials, Philadelphia, Pa.: 75–90.

    Google Scholar 

  • Taub, F. B., A. C. Kindig & L. L. Conquest, 1986. Preliminary results of interlaboratory testing of a standardized aquatic microcosm. In J. Cairns, Jr. (ed.), Community Toxicity Testing, STP 920. American Society for Testing and Materials, Philadelphia, Pa.: 93–120.

    Google Scholar 

  • Tebo, L. B., Jr., 1985. Technical considerations related to the regulatory use of multispecies toxicity tests. In J. Cairns, Jr. (ed.), Multispecies Toxicity Testing. Pergamon Press, N.Y.: 19–26.

    Google Scholar 

  • Wall, T. M. & R. W. Hanmer, 1987. Biological testing to control toxic water pollutants. J. Wat. Pollut. Cont. Fed. 59: 7–12.

    Google Scholar 

  • Webster, J. R., 1979. Hierarchical organization of ecosystems. In A. Halfon (ed)., Theoretical Systems Ecology. Academic Press, N.Y.: 119–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairns, J., Pratt, J.R. The scientific basis of bioassays. Hydrobiologia 188, 5–20 (1989). https://doi.org/10.1007/BF00027769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027769

Key words

Navigation