Skip to main content
Log in

Phytoplankton and zooplankton (Cladocera, Copepoda) relationship in the eutrophicated River Danube (Danubialia Hungarica, CXI)

  • Annual and seasonal cycles
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The seasonal variation in primary production, individual numbers, and biomass of phyto- and zooplankton was studied in the River Danube in 1981. The secondary production of two dominant zooplankton species (Bosmina longirostris and Acanthocyclops robustus) was also estimated. In the growing season (April–Sept.) individual numbers dry weights and chlorophyll a contents of phytoplankton ranged between 30–90 × 106 individuals, l−1, 3–12 mg l−1, and 50–170 µg l−1, respectively. Species of Thalassiosiraceae (Bacillariophyta) dominated in the phytoplankton with a subdominance of Chlorococcales in summer. Individual numbers and dry weights of crustacean zooplankton ranged between 1400–6500 individuals m−3, and 1.2–12 mg m−3, respectively. The daily mean gross primary production was 970 mg C m−3 d−1, and the net production was 660 mg C m−3 d−1. Acanthocyclops robustus populations produced 0.2 mg C m−3 d−1 as an average, and Bosmina longirostris populations 0.07 mg C m−3 d−1. The ‘ecological efficiency’ between phytoplankton and crustacean zooplankton was 0.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson, H., 1979. Zooplankton and its relation to available food in Lake Myvatn. Oikos 32: 162–194.

    Google Scholar 

  • Bothár, A., 1986. Population dynamics and estimation of production in Bosmina longirostris (O. F. Müller) in the River Danube. Hydrobiologia 140: 97–104.

    Google Scholar 

  • Bothár, A., 1987. The estimation of production and mortality of Bosmina longirostris (O. F. Müller) in the River Danube. Hydrobiologia 145: 285–291.

    Google Scholar 

  • Bothár, A., 1987. Produktionsschätzung von Acanthocyclops robustus (G. O. Sars) in der Donau. In D. Müller (ed.), Wissenschaftliche Kurzreferate. 26. Arbeitstagung der IAD, Passau: 339–343.

    Google Scholar 

  • Brook, A. J. & W. B. Woodward, 1956. Some observations on the effects of water inflow and outflow of the plankton of small lakes. J. anim. Ecol. 23: 101–114.

    Google Scholar 

  • Dvihally, S. T., 1975. Primary production of the Hungarian Danube. Verh. int. Ver. Limnol. 19: 1717–1722.

    Google Scholar 

  • Dvihally, S. T., M. Ertl, K. T. Kiss, A. Schmidt & N. Stefková, 1982. Mit dem Sauerstoffhaushalt zusammenhängende Untersuchungen in der mittleren Donau. Wissenschaftliche Kurzreferate. 23. Arbeitstagung der IAD, Wien: 8–15.

    Google Scholar 

  • Ertl, M. & S. Juris, 1967. Measurements of primary production in the River Danube. Biologia (Bratislava) 22: 654–659.

    Google Scholar 

  • Felföldy, L., 1980. Biological water qualification. VIZDOK, Budapest, 263 pp. (in Hungarian).

    Google Scholar 

  • Flemer, D. A., 1970. Primary productivity of the north branch of the Raritan River, New Jersey. Hydrobiologia 35: 273–296.

    Google Scholar 

  • Gutelmacher, B. L., 1986. Metabolism of plankton. Nauka, Leningrad: 155 pp. (in Russian).

    Google Scholar 

  • Hillbricht-Ilkowska, A., I. Sponiewska, T. Weglenska & A. Karabin, 1972. The seasonal variation of some ecological efficiencies and production rates in the plankton community of several Polish lakes of different trophy. In Z. Kajak & A. Hillbricht-Ilkowska (eds.), Productivity problems of freshwaters. Polish Scientific Publishers, Warsaw: 111–127.

    Google Scholar 

  • Hübel, H., 1971. Primarproduktion des Phytoplanktons. 14C-oder Radiokohlenstoffinethode. In G. Breitig & W. von Tümpling (eds.), Ausgewählte Methoden der Wasseruntersuchung, Bd II. Biologische, mikrobiologische und toxikologische Methoden, C., VEB G. Fisher Verl., Jena: 1–11.

    Google Scholar 

  • Hynes, H. B. N., 1979. The ecology of running waters. University of Toronto Press, Toronto: 541 pp.

    Google Scholar 

  • Javornický, P., 1966. Measurements of production and turnover of phytoplankton in four localities of Poland. Ekol. Pol. A 14: 203–214.

    Google Scholar 

  • Kiss, K. T., 1985. Changes of trophity conditions in the River Danube at Göd. Annls Univ. Scient. bpest. Rolando Eötvös, Sect. Biol. 24–26: 47–59.

    Google Scholar 

  • Kiss, K. T., 1987. Phytoplankton studies in the Szigetköz Section of the Danube during 1981–1982. Arch. Hydrobiol. Suppl. 78, Algol. Stud. 47: 247–273.

    Google Scholar 

  • Kothé, P., 1981. Bestimmung von Sauerstoffproduktion und SauerstofFverbrauch im Gewässer mit der Hell-Dunkelflaschenmethode, SPG und SVG. DIN 38412 Teil 13. DEV L 13.

  • Kozlovsky, D. G., 1967. A critical evaluation of the trophic level concept. I. Ecological efficiencies. Ecology 49: 48–60.

    Google Scholar 

  • Kristiansen, J., 1971. Phytoplankton of two danish lakes with special reference to seasonal cycles of the nannoplankton. Mitt. int. Ver. Limnol. 19: 253–265.

    Google Scholar 

  • Le Cren, E. D. & R. H. Lowe-McConnell (eds.), 1980. The functioning of freshwater ecosystems. International Biological Programme 22. Cambridge University Press, 588 pp.

  • OECD, 1982. Eutrophication of waters, monitoring, assessment and control. OECD Publications Office, Paris, 154 pp.

    Google Scholar 

  • Parsons, T. R., 1982. Zooplanktonic production. In R. S. Barnes & K. H. Mann (eds.), Fundamentals of aquatic ecosystems. Blackwell Scientific Publications, Oxford: 46–66.

    Google Scholar 

  • Patil, C. S. & B. Y. M. Gouder, 1985. Ecological study of freshwater zooplankton of a subtropical pond (Karnataka State, India). Hydrobiologia 70: 259–267.

    Google Scholar 

  • Pederson, G. L., E. B. Welch & A. H. Litt, 1976. Plankton secondary productivity and biomass: their relation to lake trophic state. Hydrobiologia 50: 129–144.

    Google Scholar 

  • Reif, C. B., 1939. The effect of stream conditions on lake plankton. Trans. Am. microsc. Soc. 58: 398–403.

    Google Scholar 

  • Rigler, F. H. & J. A. Downing, 1984. The calculation of secondary productivity. In J. A. Downing & F. H. Rigler (eds.), A manual on methods for the assessment of secondary productivity in fresh waters. I.B.P. Handbook 17, Blackwell Scientific Publications, Oxford: 19–58.

    Google Scholar 

  • Rodhe, W., 1969. Crystallization of eutrophication concepts in Northern Europe. In Eutrophication: causes, consequences, correctives, Nat. Acad. Sci. Washington: 50–64.

  • Rosemarin, A. S., 1975. Comparison of primary productivity (14C) per unit biomass between phytoplankton and periphyton in the Ottawa River near Ottawa, Canada. Verh. int. Ver. Limnol. 19: 1584–1592.

    Google Scholar 

  • Rzóska, J., 1978. On the nature of rivers. Dr W. Junk bv Publishers, The Hague: 67 pp.

    Google Scholar 

  • Slobodkin, L. B., 1960. Ecological energy relationships at the population level. Am. Nat. 94: 213–236.

    Google Scholar 

  • Tarasova, T. N., 1970. Primary production and organic substance destruction in the place of construction of the Cheboksary power station in 1966. Uchen. zap. Gork. Univ. Ser. Biol. 105: 32–36. (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothár, A., Kiss, K.T. Phytoplankton and zooplankton (Cladocera, Copepoda) relationship in the eutrophicated River Danube (Danubialia Hungarica, CXI). Hydrobiologia 191, 165–171 (1990). https://doi.org/10.1007/BF00026050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026050

Key words

Navigation