Skip to main content
Log in

The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal and vertical variations of the main microbial communities (heterotrophic bacteria, autotrophic picoplankton, auto- and heterotrophic nanoflagellates, ciliated protozoa and microalgae) and auto- and heterotrophic activities were estimated in a brown-colored humic and moderately acid lake in central France, the lake of Vassivière. The results demonstrated the dominant role of light in the vertical distribution of autotrophic and mixotrophic microorganisms which are confined to the 0–5 m layer during thermal stratification. The bacterial biomass was high throughout the water column probably because of the great availability of dissolved organic matter. Consequently, the predatory microzooplankton and particularly the various trophic groups of ciliated protozoa, were distributed in the water column according to the vertical distribution of the particular food resources (detritus, bacteria, algae). However, despite the great abundance of algae and bacteria, biomass of flagellated and ciliated protozoa was relatively weak. Most of the phytoplanktonic biomass was filamentous (Diatoms) or colonial (Cyanobacteria) and therefore almost probably difficult to ingest for algivorous microzooplankton. Regarding the low abundance of bacterivorous protozoa, the relation with the special physicochemical properties of this lake is discussed.

Résumé

Les variabilités saisonnière et verticale de l'abondance et de la biomasse des principles communautés de la boucle microbienne (bactéries hétérotrophes, picoplancton autotrophe, protozoaires flagellés auto- et hétérotrophes, protozoaires ciliés, microalgues et microcyanobactéries), et des activités auto- et hétérotrophes, ont été étudiées dans un lac à caractère humique et modérément acide du Massif Central Français, le lac de Vassivière.

Le dénombrement des communautés de microorganismes a été réalisé en microscopie inversée et à épifluorescence après mise en oeuvre des fixations et des colorations adéquates. Les activités photosynthétique, photo- et chemohétérotrophes ont été mesurées à partir de l'assimilation de NaH14CO3 et d'un mélange d'acides aminés tritiés grâce à une technique de double marquage. Les résultats obtenus mettent en évidence le rôle prépondérant du facteur lumineux dans la répartition verticale des microorganismes autotrophes et mixotrophes, dont l'essentiel de la biomasse est confiné dans la zone 0–5 m en période de stratification, alors que la biomasse bactérienne est élevée sur l'ensemble de la colonne d'eau en raison, sans doute, de la grande disponibilité en matiére organique dissoute. Consécutivement, le microzooplancton prédateur, et notamment les différents types trophiques de protozoaires ciliés, se répartit dans la colonne d'eau selon la distribution verticale des ressources nutritives particularies. Cependant, compte-tenu de l'abondance bactérienne et algae, la biomasse des protozoaires flagellés et ciliésest relativement peu importante. Concernant les espèces algivores, l'essentiel de la biomasse phytoplanctonique est de nature filamenteuse (Diatomées) ou coloniale (Cyanobactéries) est est donc sans doute difficilement ingérable pour le microzooplancton. Enfin, les relations entre les caractéristiques physico-chimiques spécifiques de ce lac et le faible développement des protozoaires bactérivores sont discutées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amblard, C., S. Rachiq & G. Bourdier, 1992. Photolithotrophy, photoheterotrophy and chemoheterotrophy during spring phytoplankton development (Lake Pavin). Microb. Ecol. 24: 109–123.

    Google Scholar 

  • Amblard, C., T. Sime-Ngando, S. Rachiq & G. Bourdier, 1993. Importance of ciliated protozoa in relation to the bacterial and phytoplanktonic biomass in an oligo-mesotrophic lake, during the spring diatom bloom. Aquat. Sci. 55/1: 1–9.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 11–136.

    Google Scholar 

  • Beaver, J. R., T. L. Crisman & R. W. Bienert, 1988. Distribution of planktonic ciliates in highly coloured subtropical lakes: Comparison with clearwater ciliate communities and the contribution of mixotrophic taxa to total autotrophic biomass. Freshwat. Biol. 20: 51–60.

    Google Scholar 

  • Berman, T., M. Nawrocki, G. T. Taylor, & D. M. Karl, 1987. Nutrient flux between bacteria, bacterivorous nanoplanktonic protists and algae. Mar. Microb. Food Webs 2: 69–82.

    Google Scholar 

  • Berninger, U. G., B. J. Finlay & P. Kuuppo-Leinikki, 1991. Protozoan control of bacterial abondances in freshwater. Limnol. Oceanogr. 36: 139–147.

    Google Scholar 

  • Bloem, J. & M. J. B. Bar-Gilissen, 1989. Bacterial activity and protozoan grazing potentiel in a stratified lake. Limnol. Oceanogr. 34: 297–309.

    Google Scholar 

  • Bloem, J., M. J. B. Bar-Gilissen & T. E. Cappenberg, 1986. Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl. envir. Microbiol. 52: 1266–1272.

    Google Scholar 

  • Borsheim, K. Y. & G. Bratback, 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171–175.

    Google Scholar 

  • Bratback, G., 1985. Bacterial biovolume and biomass estimations. Appl. envir. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Buffle, J., F. L. Greter & W. Haerdi, 1977. Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion selective electrodes. Analyt. Chem. 49: 216–222.

    Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Caron, D. A., 1987. Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13: 203–208.

    Google Scholar 

  • Caron, D. A., F. R. Piek & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in lake Ontario: Vertical and seasonal distribution during 1982. J. Phycol. 21: 171–175.

    Google Scholar 

  • Carrias, J-F., C. Amblard & G. Bourdier, 1993. Seasonal variations of auto- and heterotrophic flagellated protozoa and trophic relations with heterotrophic bacteria in an oligo-mesotrophic lake. Verh. int. Ver. Limnol. 25: 602.

    Google Scholar 

  • Corliss, J. O., 1979. The ciliates protozoa characterisation, classification and guide to the literature. 2nd Ed. Pergamon Press, New York, NY, 455 pp.

    Google Scholar 

  • Drageseo, J. & A. Dragesco-Kerneis, 1986. Ciliés libres de l'Afrique intertropicale. Introduction à la connaissance et à l'étude des ciliés. ORSTOM, Paris, 560 pp.

    Google Scholar 

  • Fenchel, T., 1987. Ecology of protozoa: the biology of free-living phagotrophic protists. Science Tec, Inc., Madison, WI, 197 pp.

    Google Scholar 

  • Foissner, V. W., I. Oleksiv & H. Müller, 1989. Morphology and infraciliature of some Ciliates (Protozoa: Ciliophora) from stagnant waters. Arch. Protistenkd. 138: 191–206.

    Google Scholar 

  • Gates, M. A., 1984. Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108: 233–238.

    Google Scholar 

  • Gifford, D. J., 1991. The Protozoan-Metazoan trophic link in pelagical ecosystems. J. Protozool. 38: 81–86.

    Google Scholar 

  • Hansen, K., 1962. The dystrophic lake type. Hydrobiologia 19: 183–191.

    Google Scholar 

  • Iturriaga, R. & B. G. Mitchell, 1986. Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open. Mar. Ecol. Prog. Ser. 28: 291–297.

    Google Scholar 

  • Kahl, A., 1930–1935. Urtiere order Protozoa. 1: Wimpertier oder Cilata (Infusoria), eine bearbeitung der freilebenden und ecto-commensalen Infusorien der Erde, unter Ausschluss der marinen Tintinnidae. In F. Dahl (ed.), Die Tierwelt Deutschlands, G. Fisher, Jena. Parts 18 (year 1930), 21 (1931), 25 (1932), 30 (1935), 886 pp.

  • Kudo, R., 1966. Protozoology. Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Legendre, L. & W. D. Watt, 1971–1972. On a rapid technique for plankton enumeratid. Ann. Inst. Oceanogr. 58: 173–177.

    Google Scholar 

  • McKinley, K. R., 1977. Light-mediated uptake of 3H-glucose in a small hardwater lake. Ecology 58: 1356–1365.

    Google Scholar 

  • McKinley, K. R. & R. G. Wetzel, 1979. Photolithotrophy, photoheterotrophy and chemoheterotrophy: Patterns of resource utilisation on an annual and diurnal basis within a pelagic microbial community. Microb. Ecol. 5: 1–15.

    Google Scholar 

  • Porter, K. J., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.

    Google Scholar 

  • Porter, K. J. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Porter, K. J., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In: Carpenter, S. R. (ed.), Complex interactions in lake communities. Springer: 209–227.

  • Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon: volume ratio- for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.

    Google Scholar 

  • Shannon, R. E. & P. L. Brezonik, 1972. Limnological characteristics of north and central Florida lakes. Limnol. Oceanogr. 17: 97–110.

    Google Scholar 

  • Sherr, B. F. & E. B. Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In M. J. Klug & C. A. Reddy (eds), Current perspectives in microbial Ecology. Amer. Soc. microbiol., Washington: 412–423.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225–1227.

    Google Scholar 

  • Sieburth, J. McN., 1988. The nanoalgal peak in the dim oceanic pycnocline: Is it sustained by microparticulates and their bacterial consortia?, p. 101–130. In Biogeochemical cycling and fluxes between the deep euphotic zone and other oceanic realms. Res. Rep. V. 88/1. Undersea Res. Program.

  • Sime Ngando, T. & C. A. Grolière, 1991. Effets quantitatifs des fixateurs sur la conservation des ciliés planctoniques d'eau douce. Arch. Protistenkd. 140: 109–120.

    Google Scholar 

  • Simek, K. & V. Straskrabova, 1992. Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J. Plankton Res. 14: 773–787.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Google Scholar 

  • Steemann-Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. J. Cons. Explor. Mer. 18: 117–140.

    Google Scholar 

  • Steemann-Nielsen, E., 1977. The carbon 14 technique for measuring organic production by plankton algae. A report of the present knowledge. Folia limnol. Scand. 17: 45.

    Google Scholar 

  • Stockner, J. G. & K. G. Porter, 1988. Microbial food webs in freshwater planktonic ecosystems. In S. J. Carpenter (ed.), Complex interactions in lake communities. Springer-Verlag, New York: 69–83.

    Google Scholar 

  • Taylor, W. D. & M. L. Heynen, 1987. Seasonal and vertical distribution of ciliaphora in lake Ontario. Can. J. Fish. aquat. Sci. 44: 2185–2191.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of different humic content. Microb. Ecol. 16: 311–322.

    Google Scholar 

  • Tranvik, L. J. & J. McN. Sieburth, 1989. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34: 688–699.

    Google Scholar 

  • Tsuji, T., K. Ohki & Y. Fujita, 1986. Determination of photosynthetic pigment composition in an individual phytoplankton cell in seas and lakes using fluorescence microscopy: properties of the fluorescence emitted from picophytoplankton cells. Mar. Biol. 93: 343–349.

    Google Scholar 

  • Ütermohl, H., 1958. Zur vervollkommung der quantitative phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Weisse, T., 1988. Dynamics of autotrophic picoplankton in lake Constance. J. Plankton Res. 10: 1179–1188.

    Google Scholar 

  • Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton Res. 13: 167–185.

    Google Scholar 

  • Weisse, T., H. Müller, R. M. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldringer, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781–794.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amblard, C., Carrias, JF., Bourdier, G. et al. The microbial loop in a humic lake: seasonal and vertical variations in the structure of the different communities. Hydrobiologia 300, 71–84 (1995). https://doi.org/10.1007/BF00024449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024449

Key words

Navigation