Skip to main content
Log in

Transforming the plastome: genetic markers and DNA delivery systems

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Stable chloroplast transformants were first obtained following particle bombardment of tobacco leaves, and later by PEG-mediated uptake of DNA by protoplasts. The transforming DNA in these studies was itself of plastid origin and carried double (streptomycin, spectinomycin) antibiotic resistance which was used to select transformants. Integration was by homologous recombination, and both donor and recipient were Nicotiana species. Recent characterisation of plastid mutants of Solanum nigrum has allowed the extension of this gene replacement approach to include Nicotiana:Solanum combinations.

The introduction of functional heterologous genes into the plastome is an alternative approach based on the use of constructs in which a bacterial resistance gene is flanked by sequences homologous to a region of the recipient plastome. Thus homologous recombination in the flanking sequences allows introduction of a foreign gene. A large number of putative transformants can be generated by the method, but this apparent attraction is partly offset by the need for repeated cycles of re-selection to obtain homoplasmic plants. In contrast, homoplasmy can be accomplished in a single selection step using plastome-encoded antibiotic resistance markers.

The plastome is an attractive target for the introduction of useful genes into crop plants, as maternal inheritance acts as an insurance against unwanted spread of the foreign gene, and the large plastome copy number ensures immediate gene amplification and may influence levels of expression. Specific characters encoded on the plastid DNA, including components of photosynthesis and other aspects of metabolism, will also become open to manipulation as a consequence of developments in plastid transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boynton J.E., N.W. Gillham, E.H. Harris, P. Hosler, A.M. Johnson, A.R. Jones, B.L. Randolph-Anderson, D. Robertson, T.M. Klein, K.B. Shark & J.C. Sanford, 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  • Carrer H., T.N. Hockenberry, Z. Svab & P. Maliga, 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Clark A.J., H. Bessos, J.O. Bishop, P. Brown, S. Harris, R. Lathe, M. McClenaghan, C. Prowse, J.P. Simons, C.B.A. Whitelaw & I. Wilmut, 1989. Expression of human anti-hemophiliac factor IX in the milk of transgenic sheep. Bio/Technology 7: 487–492.

    Article  CAS  Google Scholar 

  • Cséplö A. & P. Maliga, 1984. Large scale isolation of maternally inherited lincomycin resistant mutations, in diploid Nicotiana plumbaginifolia protoplast cultures. Mol. Gen. Genet. 196: 407–412.

    Article  Google Scholar 

  • Cséplö A. & P. Medgyesy, 1986. Characteristic symptoms of photosynthesis inhibition by herbicides are expressed in photomixotrophic tissue cultures of Nicotiana. Planta 168: 24–28.

    Article  Google Scholar 

  • Cséplö A., T. Etzold, J. Schell & P. Schreier, 1988. Point mutations in the 23S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformations. Mol. Gen. Genet. 214: 295–299.

    Article  PubMed  Google Scholar 

  • De Block M., J. Schell & M.Van Montagu, 1985. Chloroplast ciencetransformation by Agrobacterium tumefaciens. EMBO J. 4: 1367–1372.

    PubMed  Google Scholar 

  • Dix P.J., C.P. McKinley & P.F. McCabe, 1990. Antibiotic resistant mutants in Solanum nigrum. In: H.J.J. Nijkamp, L.H.W.Van der Plas & J.Van Aartrijk (Eds). Progress in Plant Cell and Molecular Biology, pp. 169–174. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Dyer T.A., 1985. The chloroplast genome and its products. Oxford Surveys of Plant Molecular and Cell Biology 2: 147–177.

    CAS  Google Scholar 

  • Etzold T., C.C. Fritz, J. Schell & P.H. Schreier, 1987. A point mutation in the chloroplast 16S rRNA gene of a streptomycin resistant Nicotiana tabacum. FEBS Lett. 219: 343–346.

    Article  CAS  Google Scholar 

  • Finer J.J., P. Vain, M.W. Jones & M.D. McMullen, 1992. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323–328.

    Article  CAS  Google Scholar 

  • Fluhr R., D. Aviv, E. Galun & M. Edelman, 1985. Efficient induction and selection of chloroplast encoded antibiotic resistant mutants in Nicotiana. Proc. Natl. Acad. Sci. USA 82: 1485–1489.

    Article  PubMed  CAS  Google Scholar 

  • Fromm H., M. Edelman, D. Aviv & E. Galun, 1987. The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J. 6: 3233–3237.

    PubMed  CAS  Google Scholar 

  • Fromm H., E. Galun & M. Edelman, 1989. A novel site for streptomycin resistance in the ‘530 loop’ of chloroplast 16S ribosomal RNA. Plant Mol. Biol. 12: 499–505.

    Article  CAS  Google Scholar 

  • Galili S., H. Fromm, D. Aviv, M. Edelman & E. Galun, 1989. Ribosomal protein S12 as a site for streptomycin resistance in Nicotiana chloroplasts. Mol. Gen. Genet. 218: 289–292.

    Article  PubMed  CAS  Google Scholar 

  • Golds T., P. Maliga & H.-U. Koop, 1993. Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio/Technology 11: 95–97.

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont M., 1991. Transgenic expression of amino-glycoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19: 4083–4089.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P., M. Edelman & R.B. Hallick, 1984. Chloroplast coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nucleic Acids Res. 12: 9489–9496.

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh, T.A., K.M. O'Driscoll, P.F. McCabe & P.J. Dix, 1993. Mutations conferring lincomycin, spectinomycin, and streptomycin resistance in Solanum nigrum are located in three different chloroplast genes. Mol. Gen. Genet., in press.

  • Klein T.M., T. Gradziel, M.E. Fromm & J.C. Sanford, 1988. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Bio/Technology 6: 559–563.

    Article  CAS  Google Scholar 

  • Maliga P., 1993. Towards plastid transformation in flowering plants. TIBTECH 11: 101–107.

    CAS  Google Scholar 

  • McCabe P.F., A.M. Timmons & P.J. Dix, 1989. A simple procedure for the isolation of streptomycin resistant plants in Solanaceae. Mol. Gen. Genet. 216: 132–137.

    Article  CAS  Google Scholar 

  • Medgyesy P., 1990. Selection and analysis of cytoplasmic hybrids. In: P.J. Dix (Ed). Plant Cell Line Selection, pp. 287–316. VCH Publishers, Weinheim.

    Google Scholar 

  • Medgyesy P., E. Fejes & P. Maliga, 1985. Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc. Natl. Acad. Sci. USA 82: 6960–6964.

    Article  PubMed  CAS  Google Scholar 

  • Medgyesy P., A. Páy & L. Márton, 1986. Transmission of paternal chloroplasts in Nicotiana. Mol. Gen. Genet. 204: 195–198.

    Article  CAS  Google Scholar 

  • Mullet J.E., 1988. Chloroplast development and gene expression. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 475–502.

    Article  CAS  Google Scholar 

  • Negrutiu I., R.D. Shillito, I. Potrykus, G. Biasini & F. Sala, 1987. Hybrid genes in the analysis of transformation conditions, I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 8: 363–373.

    Article  CAS  Google Scholar 

  • Ohyama K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S.-I. Aota, H. Inokuchi & H. Ozeki, 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574.

    Article  CAS  Google Scholar 

  • O'Neill C., G.V. Horváth, E. Horváth, P.J. Dix & P. Medgyesy, 1993. Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3: 729–738.

    Article  PubMed  Google Scholar 

  • Palmer J.D., 1985. Comparative organization of chloroplast genomes. Ann. Rev. Genet. 19: 325–354.

    Article  PubMed  CAS  Google Scholar 

  • Shillito R.D., M.W. Saul, J. Paszkowski, M. Müller & I. Potrykus, 1985. High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Article  Google Scholar 

  • Shinozaki K., M. Ohme, M. Tanaka, T. Wakasugi, M. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torozawa, B.Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdo, H. Shimada & M. Sugiura, 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Staub J.M. & P. Maliga, 1992. Long regions of homologous DNA are incorporated into the plastid genome by transformation. Plant Cell 4: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Staub J.M. & P. Maliga, 1993. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of psbA mRNA. EMBO J. 12: 601–606.

    PubMed  CAS  Google Scholar 

  • Svab Z. & P. Maliga, 1991. A mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol. Gen. Genet. 228: 316–319.

    Article  PubMed  CAS  Google Scholar 

  • Svab Z. & P. Maliga, 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.

    Article  PubMed  CAS  Google Scholar 

  • Svab Z., P. Hajdukiewitz & P. Maliga, 1990. Stable chloroplast transformation in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526–8530.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y., M. Dotson & N.T. Keen, 1992. Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol. 18: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Thanh N.D. & P. Medgyesy, 1989. Limited chloroplast gene transfer via recombination overcomes plastome-genome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol. Biol. 12: 87–93.

    Article  Google Scholar 

  • Thanh N.D., A. Páy, M.A. Smith, P. Medgyesy & L. Márton, 1988. Intertribal chloroplast transfer by protoplast fusion between Nicotiana tabacum and Salpiglossis sinuata. Mol. Gen. Genet. 213: 186–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dix, P.J., Kavanagh, T.A. Transforming the plastome: genetic markers and DNA delivery systems. Euphytica 85, 29–34 (1995). https://doi.org/10.1007/BF00023927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023927

Key words

Navigation