Skip to main content
Log in

The determination of desirable and nuisance plant levels in streams

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To cope with luxuriant plant growth in the streams of southern Ontario, an approach to determine the desirable and nuisance plant levels was proposed.

With a more intensive analysis of the assimilation efficiency of plant communities, which includes the fractionation of community respiration as well as compensation for the plant self-shading effect, the plant biomass of all species component expressed as chlorophyll a can be estimated from the modified growth equation, where B is the biomass, Pmax is the photosynthetic growth rate at light saturation, A is the assimilation number and S is the plant shading coefficient. Once comparable biomass values are available, a desirable plant level relative to specified environmental standards can be determined.

For instance, to meet the minimum dissolved oxygen criteria of 5 ppm, the desirable and the nuisance crop levels in the North Thames River, Ontario, were found to be 0.15 and 0.75 g chla/m2 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, N. E., Gloyna, E. F. & Copeland, B. J. 1968. Ecological aspects of stream pollution. Advances in water quality improvement. University of Texas Press, Austin, Tex. 83–95.

    Google Scholar 

  • Beyers, R. J. & Odum, H. T. 1959. The use of carbon dioxide to construct pH curves for the measurement of productivity. Limnol. Oceanogr. 4: 499–502.

    Article  Google Scholar 

  • Bindloss, M. E. 1974. Primary productivity of phytoplankton in Loch Leven, Kinross. Proc. roy. Soc. Edinb. B74.

  • Blum, J. L. 1957. An ecological study of the algae of the Saline River, Michigan. Hydrobiologia 9: 361–408.

    Article  Google Scholar 

  • Curl, H. Jr. & Small, L. F. 1965. Variations in photosynthetic assimilation ratios in natural, marine, phytoplankton communities. Limnol. Oceanogr. 10: 67–73.

    Article  Google Scholar 

  • Edwards, R. W. 1962. Some effects of plants and animals on the conditions in freshwater streams with particular reference to their oxygen balance. Int. J. Air Wat. Pollut. 6: 505–520.

    Google Scholar 

  • Edwards, R. W. & Owens, M. 1960. The effects of plants on river conditions. I. Summer crops and estimates of net productivity of macrophytes in a chalk stream. J. Ecol. 48: 151–160.

    Article  Google Scholar 

  • Edwards, R. W. & Owens, M. 1965. The oxygen balance of streams. In: Ecology and the Industrial Society, Goodman G. T., Edwards, R. W. and Lambert J. M. (eds.). Symp. Brit. Ecol. Soc. 6: 149–172. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Eppley, R. W. & Sloan, P. R. 1965. Carbon balance experiments with marine phytoplankton. J. Fish. Res. Bd. Canada. 22: 1083–1097.

    Article  CAS  Google Scholar 

  • Ganf, G. G. 1974. Rates of oxygen uptake by the planktonic community of a shallow equatorial lake (Lake George, Uganda). Oecologia (Berl.) 15: 17–32.

    Article  Google Scholar 

  • Kowalczewski, A. & Lack, T. J. 1971. Primary production and respiration of the phytoplankton of the Rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 197–212.

    Article  Google Scholar 

  • Lorenzen, C. J. 1963. Diurnal variation in photosynthetic activity of natural phytoplankton populations. Limnol. Oceanogr. 8: 56–63.

    Article  Google Scholar 

  • Lorenzen, C. J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 243–346.

    Article  Google Scholar 

  • Mathews, C. P. 1970. Estimates of production with reference to general surveys. Oikos 21: 129–133.

    Article  Google Scholar 

  • McConnell, W. J. & Sigler, W. F. 1959. Chlorophyll and productivity in a mountain river. Limnol. Oceanogr. 4: 335–351.

    Article  Google Scholar 

  • Odum, H. T. 1956a. Primary production in flowing waters. Limnol. Oceanogr. 1: 103–117.

    Article  Google Scholar 

  • Odum, H. T. 1956b. Efficiencies, size of organisms and community structure. Ecology. 37: 592–597.

    Article  Google Scholar 

  • Ontario Water Resources Commission. 1970. Guidelines and Criteria for water quality management in Ontario. p. 26.

  • Owens, M., Knowles, G. & Clark, A. 1969. The prediction of the distribution of dissolved oxygen in rivers. Advances in Water Pollution Research. Proceedings of 4th International Conference in Prague. Pergramon Press. 125–146.

  • Owens, M. & Maris, P. J. 1964. Some factors affecting the respiration of some aquatic plants. Hydrobiologia 23: 533–543.

    Article  Google Scholar 

  • Painter, D. S., Wong, S. L. & Clark, B. 1976. Nutrient growth relationships for Potamogeton pectinatus and the re-evaluation of established optimal nutrient levels for Cladophora glomerata in Southern Ontario streams. Grand River Technical Reports. No. 7 15 p.

  • Platt, T. & Subba Rao, D. V. 1973. Some current problems in marine phytoplankton productivity. Fish. Res. Bd. of Canada, Tech. Rept. No. 370, 90 p.

  • Rabinowitch, E. I. 1951. Photosynthesis and related processes. Vol. 1–2. Interscience Publ. New York.

    Google Scholar 

  • Ryther, J. H. 1954. The ratio of photosynthesis to respiration in marine planktonic algae and its effect upon the measurement of productivity. Deep Sea Res. 2: 134–139.

    Article  Google Scholar 

  • Ryther, J. H. 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr. 1: 61–70.

    Article  Google Scholar 

  • Ryther, J. H. & Guilland, R. R. L. 1962. Studies of marine planktonic diatoms. III. Some effects of temperature on respiration of five species. Canad. J. Microbiol. 8: 447–453.

    Article  CAS  Google Scholar 

  • Ryther, J. H. & Yentsch, C. S. 1957. The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr. 2: 281–286.

    Article  Google Scholar 

  • Steele, J. H. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 2: 137–150.

    Article  Google Scholar 

  • Steeman Neilsen, E. & Jensen, H. K. 1957. Primary oceanic production. The autotrophic production of organic matter in the oceans. Galathea Rep. 1: 49–136.

    Google Scholar 

  • Talling, J. F. 1965. The photosynthetic activity of phytoplankton in East African Lakes. Int. Rev. ges. Hydrobiol. 50: 1–32.

    Article  Google Scholar 

  • Talling, J. F. 1974. Relationships between primary production and population density (standing crop). In: Vollenweider R. A. (Ed.). A Manual in Methods for Measuring Primary Production in Aquatic Environments. 213 p. 150–153. LBP Handbook No. 12, Blackwell, Oxford.

    Google Scholar 

  • UNESCO. 1966. Determination of photosynthetic pigments in seawater Report of SCOR/UNESCO Working Group 17, which met from 4 to 6 June 1964, UNESCO, Paris: Monographs in Oceanographic Methodology 1. 69 p.

  • Verduin, J. 1951. Photosynthesis in naturally reared aquatic communities. Plant Physiol. 26: 45–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verduin, J. 1952. The volume-based photosynthetic rates of aquatic plants. Amer. J. Bot. 39: 157–159.

    Article  CAS  Google Scholar 

  • Verduin, J. 1956. Evergy fixation and utilization by natural communities in western Lake Erie. Ecology 37: 40–50.

    Article  Google Scholar 

  • Verduin, J. 1959a. Use of an aerated reference sample when measuring dissolved carbon dioxide. Ecology 40: 322–323.

    Article  CAS  Google Scholar 

  • Verduin, J. 1959b. Photosynthesis by aquatic communities in northern Ohio. Ecology, 40: 377–383.

    Article  Google Scholar 

  • Verduin, J. 1962. Energy flow through western Lake Erie. Great Lakes Basin. Amer. Assoc. for the Adv. of Sci. 107–121.

  • Westlake, D. F. 1960. Water-weed and water management. Inst. publ. Hlth. Engrs. J. 59: 148–164.

    Google Scholar 

  • Westlake, D. F. 1974. Macrophytes. In: Vollenweider R. A. (Ed.). A manual on Methods for Measuring Primary Production in Aquatic Environments. 213 p., 32–42. IBP Handbook No. 12. Blackwell, Oxford.

    Google Scholar 

  • Westlake, D. F. 1964. Light extinction, standing crop and photosynthesis within weed beds. Verh. Int. Ver. Limnol. 15: 415–425.

    Google Scholar 

  • Wetzel, R. G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Int. Rev. Ges. Hydrobiol. 49: 1–61.

    Article  Google Scholar 

  • Wetzel, R. G. & Westlake, D. F. 1974. Periphyton. In: Vollenweider, R. A. (Ed.). A Manual on Methods for Measuring Primary Production in Aquatic Environments. 213 p. 42–49. IBP Handbook No. 12 Blackwell, Oxford.

    Google Scholar 

  • Wong, S. L. & Clark, B. 1976. Field determination of the critical nutrient concentrations for Cladophora in Streams. J. Fish Res. Bd. Canada. 33: 85–92.

    Article  CAS  Google Scholar 

  • Wong, S. L., Clark, B. & Painter, D. S. 1976. Application of underwater light measurements in nutrient and production studies in shallow rivers. Freshwater Biol. 6: 543–550.

    Article  Google Scholar 

  • Wright, J. C. 1960. The limnology of Canyon Ferry Reservoir: III. Some observations on the density dependence of photosynthesis and its cause. Limnol. Oceanogr. 5: 356–361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, S.L., Clark, B. The determination of desirable and nuisance plant levels in streams. Hydrobiologia 63, 223–230 (1979). https://doi.org/10.1007/BF00023626

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023626

Keywords

Navigation