Skip to main content
Log in

Elongation factor 1α genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The life cycle of the red alga Porphyra purpurea alternates between two morphologically distinct phases: a shell-boring, filamentous sporophyte and a free-living, foliose gametophyte. From a subtracted cDNA library enriched for sporophyte-specific sequences, we isolated a cDNA encoding an unusual elongation factor 1α (EF-1α) that is expressed only in the sporophyte. A second EF-1α gene that is expressed equally in the sporophyte and the gametophyte was isolated from a genomic library. These are the only EF-1α genes detectable in P. purpurea. The constitutively expressed gene encodes and EF-1α very similar to those of most eukaryotes. However, the sporophyte-specific EF-1α is one of the most divergent yet described, with nine insertions or deletions ranging in size from 1 to 26 amino acids. This is the first report of a developmental stage-specific EF-1α outside of the animal kingdom and suggests a fundamental role for EF-1α in the developmental process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldauf SL, Palmer JD: Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562 (1993).

    PubMed  Google Scholar 

  2. Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzl M, Hilgenfeld R: Crystal structure of active elongation factor Tu reveals major domain rearrangements Nature 365: 126–132 (1993).

    PubMed  Google Scholar 

  3. Browning KS, Humphreys J, Hobbs W, Smith GB, Ravel JM: Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem 265: 17967–17973 (1990).

    PubMed  Google Scholar 

  4. Cordeelis J: Elongation factor 1α, translation and the cytoskeleton. Trends Biochem Sci 20: 169–170 (1995).

    Article  PubMed  Google Scholar 

  5. Cottrelle P, Cool M, Thuriaux P, Price VL, Thiele D, Buhler JM, Fromageot P: Either one of the two yeast EF-1 alpha genes is required for cell viability. Curr Genet 9: 693–697 (1985).

    PubMed  Google Scholar 

  6. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  7. Dje MK, Mazabraud A, Viel A, Le-Maire M, Denis H, Crawford E, Brown DD: Three genes under different developmental control encode elongation factor 1-alpha in Xenopus laevis. Nucl Acids Res 18: 3489–3493 (1990).

    PubMed  Google Scholar 

  8. Felsenstein J: Phylogeny Inference Package [PHYLIP 3.5C]. University of Washington, Seattle (1991).

    Google Scholar 

  9. Gonen H, Smith CE, Siegel NR, Kahana C, Merrick WC, Chakraburtty K, Schwartz AL, Ciechanover A: Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci USA 91: 7648–7652 (1994).

    PubMed  Google Scholar 

  10. Hovemann B, Richter S, Walldorf U, Cziepluch C: two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucl Acids Res 16: 3175–3194 (1988).

    PubMed  Google Scholar 

  11. Kikuchi Y, Shimatake H, Kikuchi A: A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J 7: 1175–1182 (1988).

    PubMed  Google Scholar 

  12. Kinzy TG, Freeman JP, Johnson AE, Merrick WC: A model for the aminoacyl-tRNA binding site of eukaryotic elongation factor 1 alpha. J Biol Chem 267: 1623–1632 (1992).

    PubMed  Google Scholar 

  13. Kjeldgaard M, Nyborg J: Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol 223: 721–742 (1992).

    Article  PubMed  Google Scholar 

  14. Knudsen SM, Frydenberg J, Clark BF, Leffers H: Tissuedependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a novel variant of human elongation-factor 1 alpha. Eur J Biochem 215: 549–554 (1993).

    PubMed  Google Scholar 

  15. Kurasawa Y, Numata O, Katoh M, Hirano H, Chiba J, Watanabe Y: Identification of Tetrayhymena 14-nm filament-associated protein as elongation factor 1 alpha. Exp Cell Res 203: 251–258 (1992).

    PubMed  Google Scholar 

  16. Kuriyama R, Savereide P, Lefebvre P, Dasgupta S: The predicted amino acid sequence of a centrosphere protein in dividing sea urchin eggs is similar to elongation factor (EF-1 alpha). J Cell Sci 95: 231–236 (1990).

    PubMed  Google Scholar 

  17. Lee S, Wolfraim LA, Wang E: Differential expression of S1 and elongation factor-1α during rat development. J Biol Chem 268: 24453–24459 (1993).

    PubMed  Google Scholar 

  18. Liboz T, Bardet C, Le-Van-Thai A, Axelos M, Lescure B: The four members of the gene family encoding the Arabidopsis thaliana translation elongation factor EF-1 alpha are actively transcribed. Plant Mol Biol 14: 102–110 (1990).

    Article  Google Scholar 

  19. Liu QY, van derMeer JP, Reith ME: Isolation and characterization of phase-specific cDNAs from sporophytes and gametophytes of Porphyra purpurea (Rhodophyta) using subtracted cDNA libraries. J Phycol 30: 513–520 (1994).

    Article  Google Scholar 

  20. Metz-Boutigue M-L, Reinbolt J, Ebel J-P, Ehresmann C, Ehresmann B: Crossliking of elongation factor Tu to tRNAPhe by trans-diamminedichloroplatinum (II). FEBS Lett 245: 194–200 (1989).

    Article  PubMed  Google Scholar 

  21. Mitman G, van derMeer JP: Meiosis, blade development and sex determination in Porphyra purpurea (Rhodophyta). J Phytol 30: 147–159 (1994).

    Google Scholar 

  22. Ohta K, Toriyama M, Miyazaki M, Murofushi H, Hosoda S. Endo S, Sakai H: The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem 265: 3240–3247 (1990).

    PubMed  Google Scholar 

  23. Pedersen S, Bloch PH, Rech S, Neidhardt FC: Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14: 179–190 (1978).

    Article  PubMed  Google Scholar 

  24. Rice EL, Bird CJ: Relationships among geographically distant populations of Gracilaria verrucosa (Gracilariales, Rhodophyta) and related species. Physcologia 29: 501–510 (1990).

    Google Scholar 

  25. Riis B, Rattan SI, Clark BFC, Merrick WC: Eurkaryotic protein elongation factors. Trends Biochem Sci 15: 420–424 (1990).

    Article  PubMed  Google Scholar 

  26. Rost B, Sander C: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90: 7558–7562 (1993).

    PubMed  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  28. Swofford DL: PAUP: Phylogenetic Analysis Using Parsimony version 3.0r. Illinois Natural History Survey, Champaign, IL (1991).

    Google Scholar 

  29. Swofford DL, Olsen GJ: In: Hillis DM, Moritz C (eds) Molecular Systematics, pp. 411–501. Sinauer Associates, Sunderland, MA (1990).

    Google Scholar 

  30. Travers A: Control of ribosomal RNA synthesis in vivo. Nature 244: 15–17 (1973).

    PubMed  Google Scholar 

  31. Viel A, Le-Marie M, Philippe H, Morales J, Mazabraud A: Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42S particles present in Xenopus laevis previtellogenic oocytes. J Biol Chem 266: 10392–10399 (1991).

    PubMed  Google Scholar 

  32. Walldorf U, Hovemann B, Bautz EKF: F1 and F2: Two similar genes regulated differentially during development of Drosphila melanogaster. Proc Natl Acad Sci USA 82: 5795–5799 (1985).

    Google Scholar 

  33. Woolley P, Clark BFC: Homologies in the structure of G-binding proteins: a analysis based on elongation factor EF-Tu. Bio technology 7: 913–920 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q.Y., Baldauf, S.L. & Reith, M.E. Elongation factor 1α genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant. Plant Mol Biol 31, 77–85 (1996). https://doi.org/10.1007/BF00020608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020608

Key words

Navigation