Skip to main content
Log in

An energy method for calculating the stress intensities in orthotropic bimaterial fracture

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An energy based numerical method has been developed for extracting stress intensities at the tip of an interface crack bounded by two orthogonal dissimilar materials and subjected to a general state of stress. The method is most suitable for mixed mode delamination fracture studies often observed in brittle matrix composite laminates. After obtaining the near-tip finite element solution for a given laminated geometry, the elastic energy release rate, i.e., J is computed via the stiffness derivative method. The individual orthotropic stress intensities, K I *, K II * are then calculated at a minimum computational expense from further J calculations perturbed by reciprocal stress intensity increments. Results obtained using the Crack Surface Displacement (CSD) method were found to be in good agreement with those obtained using the energy method. Comparisons with theoretical solutions indicate that the energy method can be used accurately even when relatively coarse finite element meshes containing approximately 200 eight noded isoparametric elements are used. The method provides an effective and reliable tool for studying via the method of finite elements delamination phenomena in composite anisotropic laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.P.L. Matos, R.M. McMeeking, P.G. Charalambides and M.D. Drory, International Journal of Fracture 40 (1989) 235–254.

    Article  Google Scholar 

  2. S.S. Wang and J.F. Yau, AIAA Journal 19 (1981) 1350–1356.

    Article  Google Scholar 

  3. D.M. Parks, International Journal of Fracture 10 (1978) 487–502.

    Article  Google Scholar 

  4. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  5. M.L. Williams, Bulletin of the Seismological Society of America 49 (1959) 199–204.

    Google Scholar 

  6. Z. Suo, Proceedings, Royal Society of London A. 427 (1990) 331–358.

    Article  Google Scholar 

  7. Z. Suo, Journal of Applied Mechanics 57 (1990) 627–634.

    Article  Google Scholar 

  8. P.G. Charalambides, Journal of American Ceramic Society 74 [12] (1991) 3066–3080.

    Article  Google Scholar 

  9. J. Dundurs, Journal of Applied Mechanics 36 (1968) 650–652.

    Article  Google Scholar 

  10. J.R. Rice, Journal of Applied Mechanics 55 (1988) 98–103.

    Article  Google Scholar 

  11. J.W. Hutchinson, Scripta Metallurgica (1990).

  12. J. Qu and J.L. Bassani, Journal of Mechanics and Physics of Solids 37 (1989) 417–433.

    Article  Google Scholar 

  13. S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body Holden Day, San Francisco: (1963).

    Google Scholar 

  14. J.D. Eshelby, W.T. Read and W. Shockley, Acta Metallurgica 1 (1953), 251–259.

    Article  Google Scholar 

  15. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Groningen, Holland (1953).

  16. M. Gotoh, International Journal of Fracture 3 (1967) 253–260.

    Google Scholar 

  17. A. Hoenig, Engineering Fracture Mechanics 16 (1982) 393–403.

    Article  Google Scholar 

  18. T.C.T. Ting, International Journal of Solids and Structures 22 (1986) 965–983.

    Article  Google Scholar 

  19. J.L. Bassani and J. Qu, Journal of Mechanics and Physics of Solids 37 (1989) 435–453.

    Article  Google Scholar 

  20. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Article  Google Scholar 

  21. J.R. Rice, pp. 192–308 in Fracture, An Advance Treatise, Vol. 2, H. Leibowitz (ed.). Academic Press, New York (1968).

    Google Scholar 

  22. F.H.K. Chen and R.T. Shield, Zeitschrift Fuer Angewandte Mathematik und Physik 28 (1977) 1–22.

    Article  Google Scholar 

  23. P.G. Charalambides et al., Mechanics of Materials 8 (1990) 269–283.

    Article  Google Scholar 

  24. P.G. Charalambides et al., Journal of Applied Mechanics 56 (1989) 77–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charalambides, P.G., Zhang, W. An energy method for calculating the stress intensities in orthotropic bimaterial fracture. Int J Fract 76, 97–120 (1996). https://doi.org/10.1007/BF00018532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018532

Navigation