Skip to main content
Log in

Function and organization of Photosystem I polypeptides

  • Reaction Center Complexes Plants and Bacteria
  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosystem I functions as a plastocyanin:ferredoxin oxidoreductase in the thylakoid membranes of chloroplasts and cyanobacteria. The PS I complex contains the photosynthetic pigments, the reaction center P700, and five electron transfer centers (A0, A1, FX, FA, and FB) that are bound to the PsaA, PsaB, and PsaC proteins. In addition, PS I complex contains at least eight other polypeptides that are accessory in their functions. Recent use of cyanobacterial molecular genetics has revealed functions of the accessory subunits of PS I. Site-directed mutagenesis is now being used to explore structure-function relations in PS I. The overall architecture of PSI complex has been revealed by X-ray crystallography, electron microscopy, and biochemical methods. The information obtained by different techniques can be used to propose a model for the organization of PS I. Spectroscopic and molecular genetic techniques have deciphered interaction of PS I proteins with the soluble electron transfer partners. This review focuses on the recent structural, biochemical and molecular genetic studies that decipher topology and functions of PS I proteins, and their interactions with soluble electron carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NHS:

N-hydroxysuccinamide

References

  • Almog O, Shoham G, Michaeli D and Nechushtai R (1991) Monomeric and trimeric forms of the Photosystem I reaction center of Mastigocladus laminosus: Crystallization and preliminary characterization. Proc Natl Acad Sci USA 88: 5312–5316

    Google Scholar 

  • Anderson B, Scheller H and Moller B (1992) The PS I-E subunit of Photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311: 169–173

    Google Scholar 

  • Anderson JM and Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80: 745–749

    Google Scholar 

  • Anderson SL and McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: A blue-light-requiring process. J Bacteriol 173: 2761–2767

    Google Scholar 

  • Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem I reaction center. J Biol Chem 252: 4564–4569

    Google Scholar 

  • Bingham SE, Xu R and Webber AN (1991) Transformation of chloroplasts with the psaB gene encoding a polypeptide of the Photosystem I reaction center. FEBS Lett 292: 137–140

    Google Scholar 

  • Boekema EJ, Dekker JP, VanHeel MG, Rogner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286

    Google Scholar 

  • Boekema EJ, Boonstra AF, Dekker JP and Rogner M (1994) Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomemb 26: 17–29

    Google Scholar 

  • Bottcher B, Graber P and Boekema EJ (1992) The structure of Photosystem-I from the thermophillic cyanobacterium Synechococcus sp. determined by electron-microscopy of 2-dimensional crystals. Biochim Biophys Acta 1100: 125–136

    Google Scholar 

  • Bottin H and Mathis P (1985) Interaction of plastocyanin with the Photosystem I reaction center: A kinetic study by flash spectroscopy. Biochemistry 24: 6453–6460

    Google Scholar 

  • Bruce BD and Malkin R (1988a) Structural aspects of Photosystem I from Dunaliella salina. Plant Physiol 88: 1201–1206

    Google Scholar 

  • Bruce BD and Malkin R (1988b) Subunit stoichiometry of the chloroplast Photosystem I complex. J Biol Chem 263: 7302–7308

    Google Scholar 

  • Bryant D (1992) Molecular biology of Photosystem I. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 501–549. Elsevier, Amsterdam

    Google Scholar 

  • Chitnis PR and Nelson N (1992a) Assembly of two subunits of the cyanobacterial Photosystem I on the n-side of thylakoid membranes. Plant Physiol 99: 239–246

    Google Scholar 

  • Chitnis PR and Nelson N (1992b) Biogenesis of Photosystem I: The subunit PsaE is important for the stability of PS I complex. In: Argyroudi-Akoyunoglou J (ed) Chloroplast Biogenesis, pp 285–290. Plenum Press, New York

    Google Scholar 

  • Chitnis PR, Reilly PA, Miedel MC and Nelson N (1989a) Structure and targeted mutagenesis of the gene encoding 8-kDa subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18374–18380

    Google Scholar 

  • Chitnis PR, Reilly PA and Nelson N (1989b) Insertional inactivation of the gene encoding subunit II of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18381–18385

    Google Scholar 

  • Chitnis PR, Purvis D and Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266: 20146–20151

    Google Scholar 

  • Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of Photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334

    Google Scholar 

  • Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie D-L and Chitnis PR (1993) Targeted inactivation of the gene psaL encoding a subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 268: 11678–11684

    Google Scholar 

  • Cohen Y, Chitnis VP, Nechushtai R and Chitnis PR (1993) Stable assembly of PsaE into cyanobacterial photosynthetic membranes is dependent on the presence of other accessory subunits of Photosystem I. Plant Mol Biol 23: 895–900

    Google Scholar 

  • Diaz A, Hervas M, Navarro JA, De laRosa MA and Tollin G (1994) A thermodynamic study by laser flash photolysis of plastocyanin and cytochrome c6 oxidation by Photosystem I from the green alga Monoraphidium braunii. Eur J Biochem 222: 1001–1007

    Google Scholar 

  • Dunn PPJ and Gray JC (1988) Localization and nucleotide sequence of the gene for the 8 kDa subunit of Photosystem I in pea and wheat chloroplast DNA. Plant Mol Biol 11: 311–319

    Google Scholar 

  • Falzone CJ, Kao Y-H, Zhao J, Bryant DA and Lecomte TTJ (1994a) The three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002: A Photosystem I protein that shows structural homology with SH3 domain. Biochemistry 33: 6052–6062

    Google Scholar 

  • Falzone CJ, Kao Y-H, Zhao J, MacLaughlin KL, Bryant DA and Lecomte TTJ (1994b) 1H and 15N NMR assignments of PsaE, a Photosystem I subunit from the cyanobacterium Synechococcus sp. PCC 7002. Biochemistry 33: 6043–6051

    Google Scholar 

  • Fish LE, Kuck U and Bogorad L (1985a) Analysis of the two partially homologous P700 chlorophyll a proteins of maize Photosystem I: Predictions based on the primary sequences and features shared by other chlorophyll proteins. In: Steinback KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 111–120. Cold Spring Harbor Laboratory, Cold Spring, New York

    Google Scholar 

  • Fish LE, Kuck U and Bogorad L (1985b) Two partialy homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophlly a protein complex of Photosystem I. J Biol Chem 260: 1413–1421

    Google Scholar 

  • Fish LE and Bogorad L (1986) Identification and analysis of the maize P700 chlorophyll a apoproteins PS I-A1 and PS I-A2 by high pressure liquid chromatography analysis and partial sequence determination. J Biol Chem 261: 8134–8139

    Google Scholar 

  • Flieger K, Oelmueller R and Herrmann RG (1993) Isolation and characterization of cDNA clones encoding a 18.8kDa polypeptide, the product of the gene psaL, associated with Photosystem I reaction center from spinach. Plant Mol Biol 22: 703–709

    Google Scholar 

  • Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosystem I reaction centre complexes. EMBO J 7: 2287–2293

    Google Scholar 

  • Ford RC, Pauptit R and Holzenburg A (1988) Structural studies on improved crystals of the Photosystem I reaction center from Phormidium laminosum. FEBS Lett 238: 385–389

    Google Scholar 

  • Ford RC, Hefti A and Engel A (1990) Ordered arrays of the Photosystem I reaction centre after reconstitution: Projections and surface reliefs of the complex at 2 nm resolution. EMBO J 9: 3067–3075

    Google Scholar 

  • Franzen L-G, Frank G, Zuber H and Rochaix J-D (1989) Isolation and characterization of cDNA clones encoding Photosystem I subunits with molecular masses 11.0, 10.0 and 8.4 kDa from Chlamydomonas reinhardtii. Mol Gen Genet 219: 137–144

    Google Scholar 

  • Fromme P, Schubert W-D and Krauss N (1994) Structure of Photosystem I: Suggestions on the docking sites for plastocyanin, ferredoxin and the coordination of P700. Biochim Biophys Acta 1187: 99–105

    Google Scholar 

  • Gavel Y, Steppuhn J, Herrmann R and VonHeijne G (1991) The ‘positive-inside rule’ applies to thylakoid membrane proteins. FEBS Lett 282: 41–46

    Google Scholar 

  • Golbeck JH (1992) Structure and function of Photosystem I. Annu Rev Plant Physiol Plant Mol Biol 43: 293–324

    Google Scholar 

  • Golbeck JH (1993a) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646

    Google Scholar 

  • Golbeck JH (1993b) The structure of Photosystem I. Curr Opinions Struct Biol 3: 508–514

    Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177

    Google Scholar 

  • Golbeck JH, Mehari T, Parrett K and Ikegami I (1988) Reconstitution of the Photosystem I complex from the P700 and FX-containing reaction center core protein and the FA/FB polypeptide. FEBS Lett 240: 9–14

    Google Scholar 

  • Gross E (1993) Plastocyanin: Structure and function. Photosynth Res 37: 103–116

    Google Scholar 

  • Haehnel W, Propper A and Krause H (1980) Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim Biophys Acta 593: 384–399

    Google Scholar 

  • Haehnel W, Jansen T, Gause K, Klosgen RB, Stahl B, Michel D, Huvermann B, Karas M and Herrmann R (1994) Electron transfer from plastocyanin to Photosystem I. EMBO J 13: 1028–1038

    Google Scholar 

  • Hatanaka H, Sonoike K, Hirano M and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. Is the psaF gene productrequired for oxidation of cytochrome c-553? Biochim Biophys Acta 1141: 45–51

    Google Scholar 

  • He WZ and Malkin R (1992) Specific release of a 9-kDa extrinsic polypeptide of Photosystem I from spinach chloroplasts by salt washing. FEBS Lett 308: 298–300

    Google Scholar 

  • Hervas M, Navarro J and Tollin G (1992) A laser-flash spectroscopy study of the kinetics of electron transfer from spinach Photosystem I to spinach and algal ferredoxins. Photochem Photobiol 56: 319–324

    Google Scholar 

  • Hervas M, Ortega JM, Navarro JA, De laRosa MA and Bottin H (1994) Laser flash kinetic analysis of Synechocystis sp. PCC 6803 cytochrome c6 and plastocyanin oxidation by Photosystem I. Biochim Biophys Acta 1184: 235–241

    Google Scholar 

  • Hippler M, Ratajczak R and Haehnel W (1989) Identification of the plastocyanin binding subunit of Photosystem I. FEBS Lett 250: 280–284

    Google Scholar 

  • Ikeuchi M (1992) Subunit proteins of Photosystem I. Plant Cell Physiol 33: 669–676

    Google Scholar 

  • Ikeuchi M, Hirano A, Hiyama T and Inoue Y (1990) Polypeptide composition of higher plant Photosystem I complex: Identification of psaI, psaJ and psaK gene products. FEBS Lett 263: 274–278

    Google Scholar 

  • Ikeuchi M, Nyhus KJ, Inou Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the Photosystem I complex from Anabaena variabilis ATCC 29413: Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 287: 5–9

    Google Scholar 

  • Ikeuchi M, Sonoike K, Koike H, Pakrasi H and Inoue Y (1993) A novel 3.5 kDa protein component of cyanobacterial Photosystem I complexes. Plant Cell Physiol 33: 1057–1063

    Google Scholar 

  • Kirsch W, Seyer P and Herrmann RG (1986) Nucleotide sequence of the clustered genes for two P700 chlorophyll a apoproteins of the Photosystem I reaction center and the ribosomal protein S14 of the spinach plastid chromosome. Curr Genet 10: 843–855

    Google Scholar 

  • Kjærulff S, Andersen B, Nielsen VS, Møller BL and Okkels JS (1993) The PS I-K subunit of Photosystem I from barley (Hordeum vulgare L.): Evidence for a gene duplication of an ancestral PS I-G/K gene. J Biol Chem 268: 18912–18916

    Google Scholar 

  • Knoetzel J and Simpson DJ (1993) The primary structure of a cDNA for PsaN, encoding an extrinsic lumenal polypeptide of barley Photosystem I. Plant Mol Biol 22: 337–345

    Google Scholar 

  • Kossel H, Dory I, Istvan G and Maier R (1990) A leucine-zipper motif in Photosystem I. Plant Mol Biol 15: 497–499

    Google Scholar 

  • Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Threedimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331

    Google Scholar 

  • Kruip J, Boekema EJ, Bald D, Boonstra AF and Rogner M (1993) Isolation and Structural Characterization of monomeric and trimeric Photosystem I complexes (P700-FA/FB and P700-FX) from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 268: 23353–23360

    Google Scholar 

  • Kruip J, Bald D, Boekema E and Rogner M (1994) Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res 40: 279–286

    Google Scholar 

  • Kuhn M, Fromme P and Krabben L (1994) A membrane attached α-helix: a conserved strucutral motif in bacterial reaction centers, Photosystem I, and chloroplast NADH-plastoquinone oxidoreductase. Trends Biochem Sci 19: 401–402

    Google Scholar 

  • Lagoutte B and Mathis P (1989) The Photosystem I reaction center: structure and photochemistry. Photochem Photobiol 49: 833–44

    Google Scholar 

  • Lagoutte B and Vallon O (1992) Purification and membrane topology of PS I-D and PS I-E, two subunits of the Photosystem I reaction center. Eur J Biochem 205: 1175–1185

    Google Scholar 

  • Lelong C, Setif P, Lagoutte B and Bottin H (1994) Identification of amino acids involved in the functional interaction between Photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem 269: 10034–10039

    Google Scholar 

  • Li N, Warren P, Golbeck JH, Frank G, Zuber H and Bryant DA (1991a) Polypeptide composition of the Photosystem I complex and the Photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–25

    Google Scholar 

  • Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991b) PsaD is required for the stable binding of PsaC to the Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872

    Google Scholar 

  • Lockau W and Nitschke W (1993) Photosystem I and its bacterial counterparts. Physiol Plant 88: 372–381

    Google Scholar 

  • Malkin R (1986) A consideration of the organization of chloroplast Photosystem I. Photosynth Res 10: 197–200

    Google Scholar 

  • Mannan RM, Whitmarsh J, Nyman P and Pakrasi HB (1991) Directed mutagenesis of an iron sulfur protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci USA 88: 10168–72

    Google Scholar 

  • Mannan RM, Pakrasi HB and Sonoike K (1994) The PsaC protein is necessary for the stable association of the PsaD, PsaE, and PsaL porteins in the Photosystem I complex: Analysis of a cyanobacterial mutant strain. Arch Biochem Biophys 315: 68–73

    Google Scholar 

  • Mant A, Nielsen VS, Knott TG, Moller BL and Robinson C (1994) Multiple mechanisms for targeting of Photosystem I subunits F, H, K, L, and N into and across the thylakoid lumen. J Biol Chem 269: 27303–27309

    Google Scholar 

  • Medina M, Diaz A, Hervas M, Navarro JA, Gomez-Morano C, De laRosa MA and Tollin G (1993) A comparative laser flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome c6 photooxidation by Photosystem I particles. Eur J Biochem 213: 1133–1138

    Google Scholar 

  • Morand LZ, Cheng RH, Krogmann DW and Ho KK (1995) Soluble electron transfer catalysts of cyanobacteia, In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 381–407. Kluwer Academic Publishers, Dordrecht (in press)

    Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt HT and Herrman RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78

    Google Scholar 

  • Nechushtai R and Nelson N (1981) Purification properties and biogenesis of Chlamydomonas reinhardtii Photosystem I reaction center. J Biol Chem 256: 11624–11628

    Google Scholar 

  • Nielsen VS, Mant A, Knoetzel J, Moller BL and Robinson C (1994) Import of barley Photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. J Biol Chem 269: 3762–3766

    Google Scholar 

  • Nordling M, Sigfridsson K, Young S, Lundberg LG and Hansson O (1991) Flash-photolysis studies of the electron transfer from genetically modified spinach plastocyanin to Photosystem I. FEBS Lett 291: 327–330

    Google Scholar 

  • Nyhus KJ, Thiel T and Pakrasi HB (1993) Targeted interruption of the psaA and psaB genes encoding the reaction-centre proteins of Photosystem I in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 9: 979–988

    Google Scholar 

  • Obokata J, Mikami K, Hayashida N, Nakamura M and Sugiura M (1993) Molecular heterogeneity of Photosystem I: psaD, psaE, psaF, psaH, and psaL are all present in isoforms in Nicotiana spp. Plant Physiol 102: 1259–1267

    Google Scholar 

  • Oh-oka H, Takahashi Y, Kuriyama K, Saeki K and Matsubara H (1988) The protein responsible for center A/B in spinach Photosystem I: Isolation with iron sulfur cluster(s) and complete sequence analysis. J Biochem 103: 962–968

    Google Scholar 

  • Oh-Oka H, Takahashi Y and Matsubara H (1989) Topological considerations of the 9-kDa polypeptide which contains centers A and B, associated with the 14- and 19-kDa polypeptides in the Photosystem I complex of spinach. Plant Cell Physiol 30: 869–875

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Tohru S, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Google Scholar 

  • Okkels JS, Nielsen S, Scheller HV and Møller BL (1992) A cDNA clone from barley encoding the precursor from the Photosystem I polypeptide PS I-G: Sequence similarity to PS I-K. Plant Mol Biol 18: 989–994

    Google Scholar 

  • Ortiz W, Lam E, Chollar S, Munt D and Malkin R (1985) Topography of the protein complexs of the chloroplast thylakiod membrane. Studies of Photosystem I using a chemical probe and proteolytic digestion. Plant Physiol 77: 389–397

    Google Scholar 

  • Pakrasi HB and Vermaas WFJ (1992) Protein engineering of Photosystem II. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 231–257. Elsevier, Amsterdam

    Google Scholar 

  • Pierre Y and Popot J-L (1993) Identification of two 4-kDa miniproteins in the cytochrome b6f complex from Chlamydomonas reinhardtii. CR Acad Sci Paris 316: 1404–1409

    Google Scholar 

  • Redinbo MR, Yeates TO and Merchant S (1994) Plastocyanin: Structural and functional analysis. J Bioenerg Biomemb 26: 49–66

    Google Scholar 

  • Reilly P and Nelson N (1988) Photosystem I complex. Photosynth Res 19: 73–84

    Google Scholar 

  • Rodday SM, Jun S-S and Biggins J (1993) Interaction of the FAFB-containing subunit with the Photosystem I core heterodimer. Photosynth Res 36: 1–9

    Google Scholar 

  • Rousseau F, Setif P and Lagoutte B (1993) Evidence for the involvement of PS I-E subunit in the reduction of ferredoxin by Photosystem I. EMBO J 12: 1755–1765

    Google Scholar 

  • Sadewasser DA and Sherman LA (1981) Internal and external membrane proteins of the cyanobacterium, Synechococcus cedrorum. Biochim Biophys Acta 640: 326–340

    Google Scholar 

  • Scheller HV, Svedson I and Moller BL (1989a) Subunit compostion of Photosystem I and identification of center X as [4Fe-4S] iron-sulfur cluster. J Biol Chem 264: 6929–6934

    Google Scholar 

  • Scheller HV, Okkels JS, Høj PB, Svendsen I, Roepstorff P and Møller BL (1989b) The primary structure of a 4.0-kDa Photosystem I polypeptide encoded by the chloroplast psaI gene. J Biol Chem 264: 18402–18406

    Google Scholar 

  • Setif PQY (1992) Energy transfer and trapping in Photosystem I. In: Barber J (ed) Current Topics in Photosynthesis, pp 471–499. Elsevier, Amsterdam

    Google Scholar 

  • Setif PQY and Bottin H (1994) Laser flash absorption spectroscopy study of ferredoxin reduction by Photosystem I in Synechocystis sp. PCC 6803: Evidence for submicrosecond and microsecond kinetics. Biochemistry 33: 8495–8504

    Google Scholar 

  • Shen G, Boussiba S and Vermaas WFJ (1993) Synechocystis sp. PCC 6803 strains lacking Photosystem I and phycobilisome function. Plant Cell 5: 1853–1863

    Google Scholar 

  • Sherman DM, Troyan TA and Sherman LA (1994) Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942: Radial asymmetry in the photosynthetic complexes. Plant Physiol 106: 251–262

    Google Scholar 

  • Smart LB and McIntosh L (1993) Genetic inactivation of the psaB gene in Synechocystis sp. PCC 6803 disrupts assembly of Photosystem I. Plant Mol Biol 21: 177–180

    Google Scholar 

  • Smart LB, Warren PV, Golbeck JH and McIntosh L (1993) Mutational analysis of the structure and biogenesis of the Photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 90: 1132–1136

    Google Scholar 

  • Smart LB, Anderson SL and McIntosh L (1992) Targeted genetic inactivation of the Photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J 10: 3289–3296

    Google Scholar 

  • Smart LB, Bowlby NR, Anderson SL, Sithole I and McIntosh L (1994) Genetic manipulation of the cyanobacterium Synechocystis sp. PCC 6803: Development of strains lacking Photosystem I for the analysis of mutations in Photosystem II. Plant Physiol 104: 349–354

    Google Scholar 

  • Sonoike K, Ikeuchi M and Pakrasi HB (1992) Presence of an N-terminal presequence in the PsaI protein of the Photosystem I complex in the filamentous Cyanobacterium Anabaena variabilis ATCC 29413. Plant Mol Biol 20: 987–990

    Google Scholar 

  • Sonoike K, Hatanaka H and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141: 52–57

    Google Scholar 

  • Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thummler F, Lottspeich F and Herrmann RG (1988) Nucleotide sequence of cDNA clones encoding the entire precursor polypeptides for subunits IV and V of Photosystem I reaction center from spinach. FEBS Lett 237: 218–224

    Google Scholar 

  • Strotmann H and Weber N (1993) On the function of PsaE in chloroplast Photosystem I. Biochim Biophys Acta 1143: 204–210

    Google Scholar 

  • Takahashi Y, Goldschmidt-Clermont M, Soen S-Y, Franzen LG and Rochaix J-D (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: Insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes Photosystem I. EMBO J 10: 2033–2040

    Google Scholar 

  • Thornber JP, Peter GF, Morishige DT, Gomez S, Anandan S, Welty B, Lee A, Kerfeld C, Takeuchi T and Preiss S (1993) Light harvesting in Photosystems I and II. Biochemical Soc Trans 21: 15–18

    Google Scholar 

  • Thornber JP, Cogdell R, Chitnis PR, Morishige DT, Peter GF, Gomez S, Anandan S, Preiss S, Welty B, Lee A, Takeuchi T and Kerfeld C (1994) The light harvesting systems of bacteria and higher plants. In: Barber J (ed) Photosynthesis, pp 58–116. JAI Press, New York

    Google Scholar 

  • Tjus SE and Andersson B (1991) Extrinsic polypeptides of spinach Photosystem I. Photosynth Res 27: 209–219

    Google Scholar 

  • Toelge M, Ziegler K, Maldener I and Lockau W (1991) Directed mutagenesis of the gene psaB of Photosystem I of the cyanobacterium Anabaena vaiabilis ATCC 29413. Biochim Biophys Acta 1060: 233–236

    Google Scholar 

  • Tsiotis G, Nitshke W, Haase W and Michel H (1993) Purification and crystallization of Photosystem I complex from a phycobilisome-less mutant of the cyanobacterium Synechococcus PCC 7002. Photosynth Res 35: 285–297

    Google Scholar 

  • Vallon O and Bogorad L (1993) Topological study of PS I-A and PS I-B, the large subunits of the Photosystem-I reaction center. Eur J Biochem 214: 907–915

    Google Scholar 

  • VanGrondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Google Scholar 

  • VonHeijne G and Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174: 671–674

    Google Scholar 

  • Warren PV, Smart LB, McIntosh L and Golbeck JH (1993) Site-directed conversion of cysteine-565 to serine in PsaB of Photosystem I results in the assembly of [3Fe-4S] and [4Fe-4S] clusters in Fx. A mixed ligand [4Fe-4S] cluster is capable of electron transport to FA and FB. Biochemistry 90: 1132–1136

    Google Scholar 

  • Webber A and Malkin R (1990) Photosystem I reaction-centre proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett 264: 1–4

    Google Scholar 

  • Webber A, Gibbs P, Ward J and Bingham S (1993) Site-directed mutagenesis of the Photosystem I reaction center in chloroplasts: The proline-cysteine motif. J Biol Chem 268: 12990–12995

    Google Scholar 

  • Williams RC, Glazer AN and Lundell DJ (1983) Cyanobacterial Photosystem I: Morphology and aggregation behavior. Proc Natl Acad Sci USA 80: 5923–5926

    Google Scholar 

  • Witt I, Witt HT, Gerken S, Saenger W, Dekker JP and Rogner M (1987) Crystallization of reaction center I of photosynthesis, lowconcentration crystallization of photoactive protein complex from the cyanobacterium Synechoccus sp. FEBS Lett 221: 260–264

    Google Scholar 

  • Wynn RM and Malkin R (1988) Interaction of plastocyanin with Photosystem I: A chemical cross-linking study of the polypeptide that binds to plastocyanin. Biochemistry 27: 5863–5869

    Google Scholar 

  • Wynn RM and Malkin R (1990) The Photosystem I 5.5 kDa subunit (the psaK gene product). An intrinsic subunit of the PS I reaction center complex. FEBS Lett 262: 45–48

    Google Scholar 

  • Wynn RM, Omaha J and Malkin R (1989a) Structural and functional properties of the cyanobacterial Photosystem I complex. Biochemistry 28: 5554–5560

    Google Scholar 

  • Wynn RM, Luong C and Malkin R (1989b) Maize Photosystem I. Identification of the subunit which binds plastocyanin. Plant Physiol 91: 445–449

    Google Scholar 

  • Xu Q, Armbrust TS, Guikema JA and Chitnis PR (1994a) Organization of Photosystem I polypeptides: A structural interactions between PsaD and PsaL subunits. Plant Physiol 106: 1057–1063

    Google Scholar 

  • Xu Q, Guikema JA and Chitnis PR (1994b) Identification of surface-exposed domains on the reducing side of Photosystem I. Plant Physiol 106: 617–624

    Google Scholar 

  • Xu Q, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994c) Mutational analysis of Photosystem I polypeptides in Synechocystis sp. PCC 6803. Subunit requirements for the reduction of NADP+ mediated by ferredoxin and flavodoxin. J Biol Chem 269: 21512–21518

    Google Scholar 

  • Xu Q, Odom WR, Guikema JA, Chitnis VP and Chitnis PR (1994d) Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of Photosystem I. Plant Mol Biol 26: 291–302

    Google Scholar 

  • Xu Q, Yu L, Chitnis VP and Chitnis PR (1994e) Function and organization of Photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211

    Google Scholar 

  • Xu Q, Hoppe D, Chitnis VP, Odom WR, Guikema JA and Chitnis PR (1995) Mutational analysis of Photosystem I polypeptides in Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the role of PsaI in structural organization of PsaL. J Biol Chem (In press)

  • Yu L, Zhao J, Lu W, Bryant DA and Golbeck JH (1993a) Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound PsaC mutants C14D and C51D. The midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of Photosystem I. Biochemistry 32: 8251–8258

    Google Scholar 

  • Yu L, Zhao J, Mühlenhoff U, Bryant DA and Golbeck JH (1993b) PsaE is required for in vivo cyclic electron flow around Photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180

    Google Scholar 

  • Zanetti G and Merati G (1987) Interaction between Photosystem I and ferredoxin: Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146

    Google Scholar 

  • Zhao J, Warren PV, Li N, Bryant DA and Golbeck JH (1990) Reconstitution of electron transport in Photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276: 175–180

    Google Scholar 

  • Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099

    Google Scholar 

  • Zhao J, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Micobiol 9: 183–194

    Google Scholar 

  • Zilber AL and Malkin R (1988) Ferredoxin cross-links to a 22 kD subunit of Photosystem I. Plant Physiol 88: 810–814

    Google Scholar 

  • Zilber AL and Malkin R (1992) Organization and topology of Photosystem I subunits. Plant Physiol 99: 901–911

    Google Scholar 

  • Zilber AL, Wynn R, Webber A and Malkin R (1990) Organization of PS I subunits in thylakoid membranes. In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 575–578. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is dedicated to Prof. J. Philip Thornber, in whose laboratory PRC was introduced to the green world of chlorophyllproteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitnis, P.R., Xu, Q., Chitnis, V.P. et al. Function and organization of Photosystem I polypeptides. Photosynth Res 44, 23–40 (1995). https://doi.org/10.1007/BF00018294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018294

Key words

Navigation