Skip to main content

Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications

  • Chapter
  • First Online:
Crosslinking in Materials Science

Part of the book series: Advances in Polymer Science ((POLYMER,volume 184))

Abstract

The purpose of this paper is to review the most significant developments of the last 10 years in the field of crosslinked polyolefin foams. The methods to produce the foams, the relationships between structure and properties, and the main applications of these materials are briefly reviewed. Topics of possible future research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

AAGR:

Average annual growth rate

AZD:

Azodicarbonamide

CPOF:

Crosslinked polyolefin foams

C :

Constant that accounts for the cell shape

C1 , C2 , C3:

Fitting constants in the Gibson and Ahsby equations

Φ :

Mean cell size

δ :

Mean cell wall thickness

σc :

Collapse or yield stress

ρ :

Density of the foam

ρs :

Density of the solid polymer

DCP:

Dicumyl peroxide

EVA:

Ethylene vinyl acetate copolymer

ESI:

Ethylene styrene interpolymer

D ef :

Effective diffusion coefficient

f s :

Fraction of material in the struts or edges

T N :

Fraction of radiant energy sent forward by a solid membrane of thickness δ

r :

Fraction of incident energy reflected by each gas-solid interface

t :

Fraction of energy transmitted through a solid membrane

HDPE:

High-density polyethylene

K :

Foam bulk modulus

L :

Foam thickness

p 0 :

Initial gas pressure

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

PO:

Polyolefin

PP:

Polypropylene

ρ/ρs :

Relative density

ω :

Refractive index of the plastic

ν :

Poisson ratio

P :

Polymer permeability

ε :

Strain

σ :

Stefan--Boltzman constant

λ :

Foam thermal conductivity

T :

Temperature

λg :

Thermal conductivity by conduction through the gas phase

λs :

Thermal conductivity by conduction through the solid phase

λr :

Thermal conductivity by radiation

λgas :

Thermal conductivity of the gas

λsolid :

Thermal conductivity of the solid

α :

Thermal expansion of the foam

αg :

Thermal expansion of the gas

αs :

Thermal expansion of the solid

V gas :

Volume fraction of gas

V poly :

Volume fraction of solid

E s :

Solid polymer Young modulus

E :

Foam Young modulus

References

  1. Gibson LJ, Ashby MF (1998) Cellular Solids: Structure and Properties, 2nd edn. Pergamon, Oxford

    Google Scholar 

  2. Cunningham A, Hilyard NC (1994) Physical Behavior of Foams: An Overview. In: Hilyard NC, Cunningham A (eds) Low Density Cellular Plastics: Physical Basis of Behaviour. Chapman and Hall, London

    Google Scholar 

  3. Park CP (1991) Polyolefin Foams. In: Klempner D, Frisch KC (eds) Handbook of Polymeric Foams and Foam Technology. Hanser, Munich

    Google Scholar 

  4. Khemani KC (1997) Polymeric Foams: An overview. In: Khemani KC (ed) Polymeric Foams: Science and Technology, ACS Symposium Series

    Google Scholar 

  5. Business Communications Company (2004) RP-120X Polymeric Foams – Updated Edition. Norwalk, CT

    Google Scholar 

  6. Eaves DE (1998) Cell Polym 7:297

    Google Scholar 

  7. Puri RR, Collington KT (1988) Cell Polym 7:57

    Google Scholar 

  8. Puri RR, Collington KT (1988) Cell Polym 7:219

    CAS  Google Scholar 

  9. Trageser DA (1977) Radiat Phys Chem 9:261

    CAS  Google Scholar 

  10. Almanza OA, Rodríguez-Pérez MA, de Saja JA (2000) J Polym Sci Part B Polym Phys 38:993

    CAS  Google Scholar 

  11. Almanza OA, Rodríguez-Pérez MA, de Saja JA (2001) Polymer 42:7117

    Article  CAS  Google Scholar 

  12. Martínez-Díez JA, Rodríguez-Pérez MA, de Saja JA, Arcos y Rábago LO, Almanza OA (2001) J Cell Plast 37:21

    Article  Google Scholar 

  13. Rodríguez-Pérez MA, Alonso O, Duijsens A, de Saja JA (1998) J Polym Sci Part B Polym Phys 36:2587

    Google Scholar 

  14. Rodríguez-Pérez MA, Diez S, de Saja JA (1998) Polym Eng Sci 38:831–838(1998)A

    Article  Google Scholar 

  15. Rodríguez-Pérez MA, Duijsens A, de Saja JA (1998) J Appl Polym Sci 68:1237

    Article  Google Scholar 

  16. Rodríguez-Pérez MA, de Saja JA (1999) Cell Polym 18:1

    Google Scholar 

  17. Kyung WS, Park CP, Myron J, Maurer J, Tusim MH, Genova RD, Bross R, Sophiea DP (2000) Adv Mater 23:1779

    Google Scholar 

  18. Mapleston P (1998) Mod Plast Int 18:43

    Google Scholar 

  19. Park CP, Clingerman GP (1997) Plast Eng March 1997

    Google Scholar 

  20. Liu IC, Tsiang RC (2003) Polym Compos 24:304

    Article  Google Scholar 

  21. Ankrah S, Verdejo R, Mills NJ (2002) Cell Polym 21:237

    CAS  Google Scholar 

  22. Chaudhary BI, Barry RP, Tusim MH (2000) J Cell Plast 36:397

    Article  Google Scholar 

  23. Dubois R, Karande S, Wright DP, Martínez F (2002) J Cell Plast 38:149

    Article  CAS  Google Scholar 

  24. Synclair KB (1993) Proc 8th Polyolefins Int Conf SPE, p 1

    Google Scholar 

  25. Anon (1995) J Plast Eng 16:20

    Google Scholar 

  26. Zotefoams (2003) Product Guide, Croydon, UK

    Google Scholar 

  27. Kim DW, Kim KS (2001) J Cell Plast 37:333

    Article  CAS  Google Scholar 

  28. Kim DW, Kim KS (2002) J Cell Plast 38:471

    Article  CAS  Google Scholar 

  29. Abe S, Yamaguchi M (2001) J Appl Polym Sci 79:2146

    Article  CAS  Google Scholar 

  30. Heck RL (1998) Cell Polym 17:31

    CAS  Google Scholar 

  31. Bhatt CU, Royer JR, Hwang CR, Khan SA (1999) J Poly Sci Part B Polym Phys 37:1045

    Article  CAS  Google Scholar 

  32. Sekisui Alveo (2003) Product Guide. Roermond, The Netherlands

    Google Scholar 

  33. Djoumaliisky S, Christova D, Touleshkov N, Nedkov E (1998) J Macromol Sci A A35:1147

    Article  CAS  Google Scholar 

  34. Tokuda S, Kemmotsu T (1995) Radiat Phys Chem 46:905

    Article  CAS  Google Scholar 

  35. Fritz HG, Bolz U, Lu R (1998) Int Polym Process 13:129

    CAS  Google Scholar 

  36. Zotefoams (1999) High Perform Polym Oct 1999, p 2

    Google Scholar 

  37. Sims GLA, Sipaut CS (2001) Cell Polym 20:255

    CAS  Google Scholar 

  38. Bambara JD, Kozma ML, Hurley RF (1999) US Patent 5883144

    Google Scholar 

  39. Bhatt CU, Hwang CR, Khan SA (1998) Radiat Phys Chem 53:539

    Article  CAS  Google Scholar 

  40. Cardoso ECLm, Lugao AB, Andrade E, Silva LG (1998) Radiat Phys Chem 52:197

    Article  CAS  Google Scholar 

  41. Dixon D, Martin PJ, Harkin-Jones E (2000) J Cell Plast 36:310

    Article  CAS  Google Scholar 

  42. Sims GLA, Sirithongtaworn W (1997) Cell Polym 16:271

    CAS  Google Scholar 

  43. Sims GLA, Khunniteekool C (1996) Cell Polym 15:1

    Google Scholar 

  44. Yamaguchi M, Susuki KI (2001) J Polym Sci Part B Polym Phys 39:2159

    CAS  Google Scholar 

  45. Abe S, Yamaguchi M (2001) J Appl Polym Sci 79:2146

    Article  CAS  Google Scholar 

  46. Zhang Y, Rodrigue D, Ait-Kadi A (2003) J Appl Polym Sci 90:2111

    Article  CAS  Google Scholar 

  47. Gendron R, Vachon C (2003) J Cell Plast 39:117

    Article  CAS  Google Scholar 

  48. Kotzev G, Touleshkov N, Christova D (2002) Macromol Symp 181:507

    Article  CAS  Google Scholar 

  49. Kotzev G, Touleshkov N, Christova D, Nedkov E (2000) J Cell Plast 36:29

    Article  CAS  Google Scholar 

  50. Kotzev G, Touleshkov N, Christova D, Nedkov E (1998) J Macromol Sci A A35:1127

    Article  CAS  Google Scholar 

  51. Hiroo I (1989) US Patent 4877814

    Google Scholar 

  52. Park CP (2003) US Patent 6541105

    Google Scholar 

  53. Akitaka S, Aizawa T (1984) US Patent 4424181

    Google Scholar 

  54. Tai HJ, Wang JB (1997) J Cell Plast 3:304

    Google Scholar 

  55. Tatibouët J, Gendron R, Haïder L (2003) Polym Test 23:125

    Article  Google Scholar 

  56. Mahapatro A, Mills NJ, Sims GLS (1998) Cell Polym 17:252

    CAS  Google Scholar 

  57. Kuhn J, Ebert HP (1992) Int J Heat Mass Transfer 35:1795

    Article  CAS  Google Scholar 

  58. Mills NJ, Zhu HX (1999) The Compression of Closed-Cell Polymer Foams. In: Sadoc F, Rivier N (eds) Foams and Emulsions. NATO ASI Series. Kluwer, Dordrecht, p 175

    Google Scholar 

  59. Rhodes MB (1994) Characterization of Polymeric Cellular Structures. In: Hilyard NC, Cunningham A (eds) Low Density Cellular Plastics: Physical Basis of Behaviour. Chapman and Hall, London

    Google Scholar 

  60. Sims GLA, Khunniteekool C (1994) Cell Polym 13:137

    Google Scholar 

  61. Rodríguez-Pérez MA, de Saja JA (2002) J Macromol Sci Phys Vol B41:761

    Google Scholar 

  62. Almanza OA, Masso-Moreu Y, Mills NJ, Rodríguez-Pérez MA (2004) J Polym Sci Part B Polym Phys 42:3741

    CAS  Google Scholar 

  63. Zipper P, Djoumaliisky S (2002) Macomol Symp 181:421

    Article  CAS  Google Scholar 

  64. Rusch KC (1970) J Appl Polym Sci 14:1263

    Article  CAS  Google Scholar 

  65. Mills NJ, Gilchrist A (1997) Cell Polym 16:87

    CAS  Google Scholar 

  66. Almanza OA, Arcos y Rábago LO, Rodríguez-Pérez MA, González A, de Saja JA (2001) J Macromol Sci Phys B40:603

    Article  Google Scholar 

  67. Ramsteiner F, Fell N, Forster S (2001) Polym Test 20:661

    Article  CAS  Google Scholar 

  68. Clutton EQ, Rice GN (1991) Prog Rubber Plast Tech 7:38

    CAS  Google Scholar 

  69. Rodriguez-Perez MA, Gonzalez-Pena JI, Witten N, de Saja JA (2002) Cell Polym 21:165

    CAS  Google Scholar 

  70. Ozkul MH, Mark JE (1994) Polym Eng Sci 34:798

    Article  Google Scholar 

  71. Clutton EQ, Rice GN (1991) Prog Rubber Plast Tech 7:38

    CAS  Google Scholar 

  72. Sombatsompop N, Saengjun B, Tareelap N, Sudaprasert T (1999) Cell Polym 18:197

    CAS  Google Scholar 

  73. Mills NJ, Zhu H (1999) J Mech Phys Solids 47:669

    Article  CAS  Google Scholar 

  74. Kraynik AM, Neilsen MK, Reinelt DA, Warren WE (1999) Foam Micromechanics Structure and Rheology of Foams, Emulsions and Cellular Solids. In: Sadoc F, Rivier N (eds) Foams and Emulsions. NATO ASI Series. Kluwer, Dordrecht, p 259

    Google Scholar 

  75. Mills NJ (1994) Impact Response. In: Hilyard NC, Cunningham A (eds) Low Density Cellular Plastics: Physical Basis of Behaviour. Chapman and Hall, London

    Google Scholar 

  76. Gruenbaum G, Miltz J (1983) J Appl Polym Sci 28:135

    Article  CAS  Google Scholar 

  77. Miltz J, Ramon O, Mizrahi S (1989) J Appl Polym Sci 38:281

    Article  CAS  Google Scholar 

  78. Loveridge P, Mills NJ (1993) Proc Cellular Polymers II Conf, Rapra Technology, paper 21

    Google Scholar 

  79. Totten TL, Burgess GJ, Singh SP (1990) Packag Tech Sci 3:117

    Article  Google Scholar 

  80. Mills NJ, Hwang AMH (1989) Cell Polym 8:259

    CAS  Google Scholar 

  81. Marcondes J, Hatton K, Graham J, Schueneman H (2003) Packag Tech Sci 16:69

    Article  CAS  Google Scholar 

  82. Mills NJ, Gilchrist A (1999) Cell Polym 18:157

    CAS  Google Scholar 

  83. Velasco JI, Martínez AB, Arencón D, Almanza O, Rodríguez-Pérez MA, de Saja JA (2000) Cell Polym 19:115

    CAS  Google Scholar 

  84. Mills NJ, Gilcrist A (1997) J Cell Plast 33:264

    CAS  Google Scholar 

  85. Mills NJ, Rodriguez-Perez MA (2001) Cell Polym 20:79

    CAS  Google Scholar 

  86. Pilon L, Fedorov AG, Viskanta R (2000) J Cell Plast 36:451

    Article  CAS  Google Scholar 

  87. Rodríguez-Pérez MA, de Saja JA (1999) Polym Test 19:831

    Article  Google Scholar 

  88. Rodríguez-Pérez MA (2002) Cell Polym 21:117

    Google Scholar 

  89. Ankrah S, Verdejo R, Mills NJ (2002) Cell Polym 21:237-264

    CAS  Google Scholar 

  90. Pritz T (1994) J Sound Vibrat 178:315

    Article  Google Scholar 

  91. Glicsksman LR (1994) Heat Transfer in Foams. In: Hilyard NC, Cunningham A (eds) Low Density Cellular Plastics: Physical Basis of Behaviour. Chapman and Hall, London

    Google Scholar 

  92. Leach AG (1993) J Phys D Appl Phys 26:733

    CAS  Google Scholar 

  93. Collishaw PG, Evans JRG (1983) J Mater Sci 29:486

    Article  Google Scholar 

  94. Almanza O, Rodríguez-Pérez MA, de Saja JA (1999) Cell Polym 18:6

    Google Scholar 

  95. Boetes R, Hoogendoorn CJ (1987) Proc Int Conf Heat Mass Trans 24:14

    CAS  Google Scholar 

  96. Williams JR, Aldao CM (1983) Polym Eng Sci 23:32

    Article  Google Scholar 

  97. Tamboli SM, Mhaske ST, Kale DD (2004) J Appl Polym Sci 91:110

    Article  CAS  Google Scholar 

  98. Mills NJ, Gilchrist A (1995) Cell Polym 14:461

    CAS  Google Scholar 

  99. Mills NJ, Gilchrist A (1991) Accid Anal Prev 23:153

    Article  CAS  Google Scholar 

  100. Verdejo R, Mills NJ (2004) J Biomechanics 37:1379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rodríguez-Pérez .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez-Pérez, M.A. (2005 ). Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications. In: Crosslinking in Materials Science. Advances in Polymer Science, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136244

Download citation

Publish with us

Policies and ethics