Skip to main content

Hardware Implementation and Optimization of Critical Modules of SM9 Digital Signature Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence Security and Privacy (AIS&P 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14509))

  • 196 Accesses

Abstract

SM9 is an identity-based cryptographic algorithm based on elliptic curves, which has high security and low management costs. However, its computational complexity restricts its development and application. This paper implements and optimizes the critical modules of SM9 digital signature algorithm based on FPGA. We simplify modular addition and subtraction, avoiding the use of large number comparators and saving approximately 50% of LUTs compared to traditional methods. The modular multiplication adopts the Montgomery modular multiplication algorithm, which only takes 0.24 \(\upmu \) s to realize modular multiplication operation on \(F_p\). For complex modules, this paper analyzes the dependency relationship between calculations and parallelizes irrelevant operations to improve the parallelism within and between modules at different levels, greatly reducing the number of computation cycles required. In addition, this paper utilizes multiplexers to achieve resource reuse while ensuring computational performance. This research is not only of great significance for the high-performance implementation of SM9, but also has reference value for the implementation of other cryptographic algorithms based on elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. State Cryptography Administration. SM9 Identification Cryptography Algorithm (2016:3). GM/T 0044.2016

    Google Scholar 

  2. Zhu, H., Tan, Y., Yu, X., et al.: An identity-based proxy signature on NTRU lattice. Chin. J. Electron. 27(2), 297–303 (2018)

    Article  Google Scholar 

  3. Zhu, H., Tan, Y., Zhu, L., et al.: An efficient identity-based proxy blind signature for semioffline services. Wirel. Commun. Mob. Comput. (2018)

    Google Scholar 

  4. Xiao, H., Liu, Y., Li, Z., Liu, G.: Algorithm-hardware co-design of ultra-high radix based high throughput modular multiplier. IEICE Electron. Express 18(10), 1–6 (2021)

    Article  Google Scholar 

  5. Zhen, P., Tu, Y., Xia, B., et al.: Research on the miller loop optimization of SM9 bilinear pairings. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT), pp. 138–144. IEEE (2017)

    Google Scholar 

  6. Wang, A.T., Guo, B.W., Wei, C.J.: Highly-parallel hardware implementation of optimal ate pairing over Barreto-Naehrig curves. Integration 64, 13–21 (2019)

    Article  Google Scholar 

  7. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  8. Miyamoto, A., Homma, N., Aoki, T., et al.: Systematic design of RSA processors based on high-radix Montgomery multipliers. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 19(7), 1136–1146 (2010)

    Article  Google Scholar 

  9. Karatsuba, A.A.: The complexity of computations. In: Proceedings of the Steklov Institute of Mathematics-Interperiodica Translation, vol. 211, pp. 169–183 (1995)

    Google Scholar 

  10. Sun, W., Wirthlin, M.J., Neuendorffer, S.: FPGA pipeline synthesis design exploration using module selection and resource sharing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(2), 254–265 (2007)

    Article  Google Scholar 

  11. Hao, Z., Guo, W., Wei, J., et al.: Dual processing engine architecture to speed up optimal ate pairing on FPGA platform. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 584–589. IEEE (2016)

    Google Scholar 

  12. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in projective coordinate over general characteristic fields. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005). https://doi.org/10.1007/11496618_13

    Chapter  Google Scholar 

  13. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_6

    Chapter  Google Scholar 

  14. Amiet D, Curiger A, Zbinden P. Flexible FPGA-based architectures for curve point multiplication over GF(p), pp. 107–114. IEEE (2016)

    Google Scholar 

  15. Islam, M.M., Hossain, M.S., Shahjalal, M., Hasan, M.K., Jang, Y.M.: Area-time efficient hardware implementation of modular multiplication for elliptic curve cryptography. IEEE Access 8, 73898–73906 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, Y., Chen, T., Li, K., Liu, L. (2024). Hardware Implementation and Optimization of Critical Modules of SM9 Digital Signature Algorithm. In: Vaidya, J., Gabbouj, M., Li, J. (eds) Artificial Intelligence Security and Privacy. AIS&P 2023. Lecture Notes in Computer Science, vol 14509. Springer, Singapore. https://doi.org/10.1007/978-981-99-9785-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9785-5_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9784-8

  • Online ISBN: 978-981-99-9785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics