Skip to main content

A Verifiable Dynamic Multi-secret Sharing Obfuscation Scheme Applied to Data LakeHouse

  • Conference paper
  • First Online:
Artificial Intelligence Security and Privacy (AIS&P 2023)

Abstract

In the context of the evolving Data LakeHouse distributed architecture and the inescapable challenges posed by DM-Crypt, a verifiable dynamic multi-secret sharing obfuscation scheme applied to the Data LakeHouse is proposed. In the proposed scheme, participants select their shadows using a secure one-way function and hide their true identities for self-protection. This scheme can conceal the actual key within any dimension of the homogeneous linear equation system. It can verify whether the distributor, participant, or key restorer has committed fraud by comparing the hash information published by the previous operator on the public bulletin board with the hash information calculated by the current operator. Enables dynamic addition or deletion of participants, dynamic key modification, and periodic key updates. Among these dynamic operations, it is fully dynamic only when participants are added or deleted, as long as the remaining participants meet the minimum decryption threshold. In other cases, the process is semi-dynamic, requiring modifications to information related to other participants. The security of the scheme is based on the Shamir threshold scheme, the asymmetric key encryption system (RSA), a secure and tamper-resistant hash function, and a secure one-way computation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: a new generation of open platforms that unify data warehousing and advanced analytics. In: Proceedings of CIDR, vol. 8 (2021)

    Google Scholar 

  2. Begoli, E., Goethert, I., Knight, K.: A lakehouse architecture for the management and analysis of heterogeneous data for biomedical research and mega-biobanks. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 4643–4651. IEEE (2021)

    Google Scholar 

  3. Binu, V.P., Sreekumar, A.: Secure and efficient secret sharing scheme with general access structures based on elliptic curve and pairing. Wireless Pers. Commun. 92, 1531–1543 (2017)

    Article  Google Scholar 

  4. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society (1979)

    Google Scholar 

  5. Cachin, C.: On-line secret sharing. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 190–198. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60693-9_22

    Chapter  Google Scholar 

  6. Chien, H.-Y., Jan, J.-K., Tseng, Y.-M.: A practical (t, n) multi-secret sharing scheme. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83(12), 2762–2765 (2000)

    Google Scholar 

  7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: 26th Annual Symposium on Foundations of Computer Science (SFCS 1985), pp. 383–395. IEEE (1985)

    Google Scholar 

  8. Massoud Hadian Dehkordi and Samaneh Mashhadi: An efficient threshold verifiable multi-secret sharing. Comput. Stand. Interfaces 30(3), 187–190 (2008)

    Article  Google Scholar 

  9. Massoud Hadian Dehkordi and Samaneh Mashhadi: New efficient and practical verifiable multi-secret sharing schemes. Inf. Sci. 178(9), 2262–2274 (2008)

    Article  MathSciNet  Google Scholar 

  10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 427–438. IEEE (1987)

    Google Scholar 

  11. Harn, L.: Efficient sharing (broadcasting) of multiple secrets. IEE Proc.-Comput. Digital Tech. 142(3), 237 (1995)

    Article  Google Scholar 

  12. He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron. Lett. 30(19), 1591–1592 (1994)

    Article  Google Scholar 

  13. Chunqiang, H., Liao, X., Cheng, X.: Verifiable multi-secret sharing based on LFSR sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Yang, G.: Pairing-based dynamic threshold secret sharing scheme. In: 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1–4. IEEE (2010)

    Google Scholar 

  15. Hwang, R.-J., Chang, C.-C.: An on-line secret sharing scheme for multi-secrets. Comput. Commun. 21(13), 1170–1176 (1998)

    Article  Google Scholar 

  16. Liang, C., Qiu, K., Zhang, Z., Yang, J., Li, Y., Jingjing, H.: Towards robust and stealthy communication for wireless intelligent terminals. Int. J. Intell. Syst. 37(12), 11791–11814 (2022)

    Article  Google Scholar 

  17. Mashhadi, S., Dehkordi, M.H.: Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion and LFSR public-key cryptosystem. Inf. Sci. 294, 31–40 (2015)

    Google Scholar 

  18. Oreščanin, D., Hlupić, T.: Data lakehouse-a novel step in analytics architecture. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 1242–1246. IEEE (2021)

    Google Scholar 

  19. Pang, P., Aourra, K., Xue, Y., Li, Y.Z., Zhang, Q.X.: A transparent encryption scheme of video data for android devices. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 817–822. IEEE (2017)

    Google Scholar 

  20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  21. Pinch, R.G.E.: On-line multiple secret sharing. Electron. Lett. 32(12), 1087–1088 (1996)

    Article  Google Scholar 

  22. Qu, J., Zou, L., Zhang, J.: A practical dynamic multi-secret sharing scheme. In: 2010 IEEE International Conference on Information Theory and Information Security, pp. 629–631. IEEE (2010)

    Google Scholar 

  23. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  24. Shao, J., Cao, Z.: A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme. Appl. Math. Comput. 168(1), 135–140 (2005)

    MathSciNet  Google Scholar 

  25. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

  26. Sun, H., Tan, Y., Zhu, L., Zhang, Q., Li, Y., Shangbo, W.: A fine-grained and traceable multidomain secure data-sharing model for intelligent terminals in edge-cloud collaboration scenarios. Int. J. Intell. Syst. 37(3), 2543–2566 (2022)

    Article  Google Scholar 

  27. Tadayon, M.H., Khanmohammadi, H., Haghighi, M.S.: Dynamic and verifiable multi-secret sharing scheme based on hermite interpolation and bilinear maps. IET Inf. Secur. 9(4), 234–239 (2015)

    Google Scholar 

  28. Tan, Y., Xinting, X., Liang, C., Zhang, X., Zhang, Q., Li, Y.: An end-to-end covert channel via packet dropout for mobile networks. Int. J. Distrib. Sens. Netw. 14(5), 1550147718779568 (2018)

    Article  Google Scholar 

  29. Tan, Y., Zhang, X., Sharif, K., Liang, C., Zhang, Q., Li, Y.: Covert timing channels for IoT over mobile networks. IEEE Wirel. Commun. 25(6), 38–44 (2018)

    Article  Google Scholar 

  30. Tan, Y., Zheng, J., Zhang, Q., Zhang, X., Li, Y., Zhang, Q.: A specific-targeting asymmetric group key agreement for cloud computing. Chin. J. Electron. 27(4), 866–872 (2018)

    Article  Google Scholar 

  31. Yang, C.-C., Chang, T.-Y., Hwang, M.-S.: A (t, n) multi-secret sharing scheme. Appl. Math. Comput. 151(2), 483–490 (2004)

    MathSciNet  Google Scholar 

  32. Zhang, Q., Li, Y., Song, D., Tan, Y.: Alliance-authentication protocol in clouds computing environment. China Commun. 9(7), 42–54 (2012)

    Google Scholar 

  33. Zhang, Q., Yong Gan, L., Liu, X.W., Luo, X., Li, Y.: An authenticated asymmetric group key agreement based on attribute encryption. J. Netw. Comput. Appl. 123, 1–10 (2018)

    Article  Google Scholar 

  34. Zhang, Q., Wang, X., Junling Yuan, L., Liu, R.W., Huang, H., Li, Y.: A hierarchical group key agreement protocol using orientable attributes for cloud computing. Inf. Sci. 480, 55–69 (2019)

    Article  Google Scholar 

  35. Zhang, X., Liang, C., Zhang, Q., Li, Y., Zheng, J., Tan, Y.: Building covert timing channels by packet rearrangement over mobile networks. Inf. Sci. 445, 66–78 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, S., Mu, T., Zheng, J., Fu, Y., Zhang, Q., Yang, J. (2024). A Verifiable Dynamic Multi-secret Sharing Obfuscation Scheme Applied to Data LakeHouse. In: Vaidya, J., Gabbouj, M., Li, J. (eds) Artificial Intelligence Security and Privacy. AIS&P 2023. Lecture Notes in Computer Science, vol 14509. Springer, Singapore. https://doi.org/10.1007/978-981-99-9785-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9785-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9784-8

  • Online ISBN: 978-981-99-9785-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics