Skip to main content

Detoxification of Contaminated Soil to Restore Its Health for Sustainable Agriculture

  • Chapter
  • First Online:
Advancements in Microbial Biotechnology for Soil Health

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 50))

  • 109 Accesses

Abstract

Around 2.5 million years in the past, the Homo genus originated in Africa, marking the initial utilisation of stone tools and remarkable evolutionary advancements. Roughly 12,000 years ago, a pivotal event took place: the domestication of plants and animals. This event sparked an agricultural revolution, leading humans to harness the land for sustenance, fundamentally altering their relationship with it. As heterotrophic organisms, humans rely on primary producers, mainly plants, to satisfy their nutritional and oxygen requirements. With the exception of hydroponics and aeroponics, plants typically rely on soil for growth, fulfilling the energy and dietary needs of the human population. Considering the present situation, soil is not just a medium that is used for growing crops; it also provides important ecosystem services. As the human population is growing at an infinite rate, we need more food production to cope with the growing population. But we humans are destroying the stability and quality of soil by releasing harmful compounds into the environment. Pollution of soil disrupts the biogeochemical cycle and food chains within the ecosystem and ultimately causes deleterious effect on humans. We need to save the diversity of soil and make conscious efforts to combat the difficulties of land management. This manuscript will discuss the biodiversity of soil, sources of soil pollution, and strategies to reduce the contamination/toxicity of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian S, Lockington R, Megharaj M, Naidu R (2016) The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr Microbiol 72:663–670

    Article  CAS  PubMed  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation, and bioaugmentation: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Ahmad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integr Omics Appl Biotechnol 3(3):39

    Google Scholar 

  • Alam GM, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic contaminated soil using phosphate. Chemosphere 43(8):1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Al-Sulaimani H, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S, Zargari S (2010) Experimental investigation of biosurfactants produced by Bacillus species and their potential for MEOR in Omani oil field. In: SPE EOR conference at oil and gas West Asia

    Google Scholar 

  • Ambaye TG, Chebbi A, Formicola F, Rosatelli A, Prasad S, Gomez FH, Vaccari M (2022) Ex-situ bioremediation of petroleum hydrocarbon contaminated soil using mixed stimulants: response and dynamics of bacterial community and phytotoxicity. J Environ Chem Eng 10(6):108814

    Article  CAS  Google Scholar 

  • Anju M (2017) Biotechnological strategies for remediation of toxic metal (loid) s from environment. In: Plant biotechnology: recent advancements and developments. Springer, pp 315–359

    Chapter  Google Scholar 

  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Mahmood T (2016) Chromium (VI) immobilisation efficiency of acid-1 activated banana peel over organo-montmorillonite in aquatic environments. Int J Phytoremed 19:605

    Article  Google Scholar 

  • Atlas RM, Philp J (2005) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press

    Book  Google Scholar 

  • Atagana HI (2008) Compost bioremediation of hydrocarboncontaminated soil inoculated with organic manure. Afr J Biotechnol 7(10):1516–1525

    Google Scholar 

  • Barathi S, Gitanjali J, Rathinasamy G, Sabapathi N, Aruljothi KN, Lee J, Kandasamy S (2023) Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. Chemosphere 337:139396

    Article  CAS  PubMed  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci 96(12):6808–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano G, Machado RDM, Correia MJN, Marrucho IM (2023) Remediation of soils contaminated with total petroleum hydrocarbons through soil washing with surfactant solutions. Environ Technol:1–14. https://doi.org/10.1080/09593330.2023.2198733

  • Cele EN, Maboeta M (2016) A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: implications for an iron ore mine site remediation. J Environ Manag 165:167–174

    Article  CAS  Google Scholar 

  • Cerqueira VS, Peralba MR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegrad 95:338–345

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kumari D, Cao CJ, Plaza G, Achal V (2020) A review on remediation technologies for nickel-contaminated soil. Hum Ecol Risk Assess Int J 26:571–585

    Article  CAS  Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopile and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–30

    Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • Deepika, Haritash AK (2023) Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Hortic Environ Biotechnol 64:1–26

    Article  Google Scholar 

  • Dellisanti F (2016) In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification. Int J Miner Process 93:239–245

    Article  Google Scholar 

  • Derz K, Schmidt B, Schwiening S, Schuphan I (2006) Comparison of microbial pyrene and benzo [a] pyrene mineralization in liquid medium, soil slurry, and soil. J Environ Sci Health B 41(5):471–484

    Article  PubMed  Google Scholar 

  • Doyle E, Blanchon D, Wells S, de Lange P, Lockhart P, Waipara N, Berry TA (2023) Internal transcribed spacer and 16s amplicon sequencing identifies microbial species associated with asbestos in New Zealand. Genes 14(3):729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68:150–158

    Article  CAS  PubMed  Google Scholar 

  • Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168

    Article  CAS  Google Scholar 

  • Ensley B, Dushenkov V, Raskin I, Salt DE (1995) Rhizofiltration: a new technology to remove heavy metals from aqueous streams. In: New remediation technology in the changing environmental arena, p 4

    Google Scholar 

  • Ent AV, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334

    Google Scholar 

  • Ferraro A, van Hullebusch ED, Huguenot D, Fabbricino M, Esposito G (2015) Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: case of a Cu contaminated soil. J Environ Manag 163:62–69

    Article  CAS  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184:7299–7307

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Wang F, Quan C, Santamaria L, Lopez G, Williams P (2022) Tire pyrolysis char: processes, properties, upgrading and applications. Prog Energy Combust Sci 93:1–37

    Article  Google Scholar 

  • Hasanuzzaman, M., & Fujita, M. 2013. Heavy metals in the environment: current status, toxic effects on plants and phytoremediation. Phytotechnologies—remediation of environmental contaminants. Edited by NA Anjum, ME Pereira, I. Ahmad, AC Duarte, S. Umar, and NA Khan. CRC Press, Boca Raton, 7–73.

    Google Scholar 

  • Havugimana E, Bhople BS, Kumar A, Byiringiro E, Mugabo JP, Kumar A (2017) Soil pollution–major sources and types of soil pollutants. Environ Sci Eng 11:53–86

    Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  PubMed  Google Scholar 

  • Henry JR (2000) An overview of the phytoremediation of lead and mercury. US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, DC, pp 1–31

    Google Scholar 

  • Hodson ME, Valsami-Jones É, Cotter-Howells JD (2000) Bonemeal additions as a remediation treatment for metal contaminated soil. Environ Sci Technol 34:3501–3507

    Article  CAS  Google Scholar 

  • Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Bilal M (2022) Biochar-based composites for remediation of polluted wastewater and soil environments: challenges and prospects. Chemosphere 297:134163

    Article  CAS  PubMed  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921

    CAS  Google Scholar 

  • Jan-Roblero J, Vasquez-Murrieta M, Hernandez-Hernandez O, Cruz-Maya J, Cancino-Diaz JC (2016) Approaches for removal of PAHs in soils: bioaugmentation, biostimulation and bioattenuation. InTech

    Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9(24):191203

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita H, Swift P, Utton C, Carro-Mateo B, Marchand G, Collier N, Milestone N (2013) Corrosion of aluminium metal in OPC- and CAC-based. Cement Concrete Res 50:11–18

    Article  CAS  Google Scholar 

  • Kos B, Leštan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang GN, Li Y (2010) Review on the remediation technologies of POPs. Hebei Environ Sci 65:1295–1299

    Google Scholar 

  • Liao X, Li Y, Yan X (2015) Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J Environ Sci 41:1–9

    Google Scholar 

  • Liu L, Song Z, Tang J, Li Q, Sarkar B, Ellam RM, Wang H (2023) New insight into the mechanisms of preferential encapsulation of metal (loid) s by wheat phytoliths under silicon nanoparticle amendment. Sci Total Environ 875:162680

    Article  CAS  PubMed  Google Scholar 

  • Lukić B, Panico A, Huguenot D, Fabbricino M, Van Hullebusch ED, Esposito G (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ Technol Rev 6(1):94–116

    Article  Google Scholar 

  • Madhav S, Mishra R, Kumari A, Srivastav AL, Ahamad A, Singh P, Sillanpää M (2023) A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-023-04950-5

  • Manquián-Cerda K, Cruces E, Escudey M, Zúñiga G, Calderón R (2018) Interactive effects of aluminium and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol Environ Saf 150:320–326

    Article  PubMed  Google Scholar 

  • Mastnak T, Cenčič Predikaka T, Svoljšak Jerman M, Finšgar M (2023) Ex situ bioremediation of diesel fuel-contaminated soil in two different climates. Int J Phytoremediation 25:1–9

    Google Scholar 

  • Meagher RBP (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biotechnol 3(2):153–162

    Article  CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2020) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Phytoremediation of contaminated soil and water. CRC Press, pp 201–219

    Chapter  Google Scholar 

  • Mihopoulos PG, Suidan MT, Sayles GD, Kaskassian S (2002) Numerical modeling of oxygen exclusion experiments of anaerobic bioventing. J Contam Hydrol 58(3–4):209–220

    Article  CAS  PubMed  Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biol 1(1):5–11

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • National Risk Management Research Laboratory (US) (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency

    Google Scholar 

  • Navarro A, Cardellach E, Cañadas I, Rodríguez J (2013) Solar thermal vitrification of mining contaminated soils. Int J Miner Process 119:65–74

    Article  CAS  Google Scholar 

  • Niazi NK, Murtaza B, Bibi I, Shahid M, White JC, Nawaz MF, Bashir S, Murtaza G (2016) Removal and recovery of metals by biosorbents and biochars derived from biowastes. In: Environmental materials and waste: resource recovery and pollution prevention. Academic Press

    Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed  PubMed Central  Google Scholar 

  • Ondon BS, Li S, Zhou Q, Li F (2021) Sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the soil: a review of the spreading mechanism and human health risks. Rev Environ Contam Toxicol 256:121–153

    CAS  PubMed  Google Scholar 

  • Pandey B, Kinrade SD, Catalan LJJ (2012) Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. J Environ Manag 101:9–67

    Article  Google Scholar 

  • Pandey VC, Singh N, Singh RP, Singh DP (2014) Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: study from the field. Ecol Eng 71:722–727

    Article  Google Scholar 

  • Park B, Son Y (2017) Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrason Sonochem 35:640–645

    Article  CAS  PubMed  Google Scholar 

  • Payne ZM, Lamichhane KM, Babcock RW, Turnbull SJ (2013) Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii. Environ Sci Processes Impacts 15(11):2023–2029

    Article  CAS  Google Scholar 

  • Priya AK, Muruganandam M, Ali SS, Kornaros M (2023) Clean-up of heavy metals from contaminated soil by phytoremediation: a multidisciplinary and eco-friendly approach. Toxics 11(5):422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian SQ, Liu Z (2000) An overview of development in the soil-remediation technologies. Chem Ind Eng Process 4:10–20

    Google Scholar 

  • Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P (2021) Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267:129205

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. John Wiley and Sons

    Google Scholar 

  • Raza T, Ali I, Khan N, Eash NS, Qadir MF, Jatav HS (2023) Detoxification of sewage sludge by natural attenuation and application as a fertilizer. In: Environmental pollution impact on plants. Apple Academic Press, pp 245–270

    Chapter  Google Scholar 

  • Ren Z, Wang L, Wang H, Liu S, Liu M (2023) Solidification/stabilization of lead-contaminated soils by phosphogypsum slag-based cementitious materials. Sci Total Environ 857:159552

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL (2001) Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation. In Vitro Cell Dev Biol Plant 37:321–325

    Article  CAS  Google Scholar 

  • Saeed MU, Hussain N, Javaid M, Zaman H (2023) Microbial remediation for environmental cleanup. In: Advanced microbial technology for sustainable agriculture and environment. Academic Press, pp 247–274

    Chapter  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Haritash AK (2019) Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int J Environ Sci Technol 16:6489–6512

    Article  Google Scholar 

  • Speight JG (2017) Sources and types of organic pollutants. In: Environmental organic chemistry for engineers, pp 153–201

    Chapter  Google Scholar 

  • Steliga T, Kluk D (2020) Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol Environ Saf 194:110409

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AY, Gladkov EA, Osipova ES, Gladkova OV, Tereshonok DV (2022) Bioremediation of soil from petroleum contamination. Processes 10(6):12–24

    Article  Google Scholar 

  • Streche C, Istrate IA, Badea AA (2018) Decontamination of petroleum-contaminated soils using the electrochemical technique: remediation degree and energy consumption. Sci Rep 8:32–72

    Article  Google Scholar 

  • Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D (2016) Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–2400

    Article  CAS  PubMed  Google Scholar 

  • Tobin JM (2001) Fungal metal biosorption. In: British mycological society symposium series, vol 23, pp 424–444

    Google Scholar 

  • Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Torres LG, Lopez RB, Beltran M (2012) Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys Chem Earth 37–39:30–36

    Article  Google Scholar 

  • Trellu C, Pechaud Y, Oturan N, Mousset E, van Hullebusch ED, Huguenot D, Oturan MA (2021) Remediation of soils contaminated by hydrophobic organic compounds: how to recover extracting agents from soil washing solutions? J Hazard Mater 404:124137

    Article  CAS  PubMed  Google Scholar 

  • Tsvetnov EV, Marakhova NA, Makarov OA, Strokov AS, Abdulkhanova DR (2019) Experience in approbation of societal land value as a basis for ecological and economic assessment of damage from land degradation. Eur Soil Sci 52:1298

    Article  Google Scholar 

  • Turnau K, Orlowska E, Ryszka P, Zubek S, Anielska T, Gawronski S, Jurkiewicz A (2006) Role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in southern Poland. In: Soil and water pollution monitoring, protection and remediation. Springer, Dordrecht, pp 533–551

    Chapter  Google Scholar 

  • Ucaroglu S, Talinli İ (2012) Recovery and safer disposal of phosphate coating sludge by solidification/stabilization. J Environ Manag 105:131–137

    Article  CAS  Google Scholar 

  • Uddin MJ, Aditya Saga G, Jagdeeshwar J (2017) Soil pollution and soil remediation techniques. Int J Adv Res Ideas Innov Technol 3(1):582–593

    Google Scholar 

  • Ullah S, Shahid M, Zia-Ur-Rehman M, Sabir M, Ahmad HR (2015) Phytoremediation of Pb-contaminated soils using synthetic chelates. In: Soil remediation and plants. Elsevier Inc.

    Google Scholar 

  • Vaverková MD, Maxianová A, Winkler J, Adamcová D, Podlasek A (2019) Environmental consequences and the role of illegal waste dumps and their impact on land degradation. Land Use Policy 89:104234

    Article  Google Scholar 

  • Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4(2):178–208

    Article  CAS  Google Scholar 

  • Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochar as amendments for the bioremediation of heavy metal contaminated soils. Chemosphere 119:190–198

    Article  CAS  PubMed  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Wang Q, Shaheen SM, Jiang Y, Li R, Slaný M, Abdelrahman H, Kwon E, Bolan N, Rinklebe J, Zhang Z (2021) Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J Hazard Mater 403:123628

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Huang M, Quan G, Zhang J, Liu Z, Ma R (2018) Turn bane into a boon: application of invasive plant species to remedy soil cadmium contamination. Chemosphere 210:1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Yanai J, Zhao F-J, McGrath SP, Kosaki T (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139(1):167–175

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Proc Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Zheng C, Wang PP (2002) A field demonstration of the simulation optimization approach for remediation system design. Ground Water 40:258–265

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Ding W, Feng L, Kong J, Xu Y, Xu J, Yang X (2012) Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem. Bioresour Technol 108:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahiya, P. et al. (2024). Detoxification of Contaminated Soil to Restore Its Health for Sustainable Agriculture. In: Bhatia, R.K., Walia, A. (eds) Advancements in Microbial Biotechnology for Soil Health. Microorganisms for Sustainability, vol 50. Springer, Singapore. https://doi.org/10.1007/978-981-99-9482-3_13

Download citation

Publish with us

Policies and ethics