Skip to main content

Improving Navigation Safety by Utilizing Statistical Method of Target Detection on the Background of Atmospheric Precipitation

  • Conference paper
  • First Online:
Trends in Sustainable Computing and Machine Intelligence (ICTSM 2023)

Abstract

This paper presents a fundamentally new approach to improving the effectiveness of navigation radars operating in rainfall conditions. Traditional ship radars operating on horizontal polarization have limitations in terms of rain interference suppression efficiency. To address this problem, we propose an innovative navigation target detection method that exploits the unique properties of 45° or circular polarization. Specifically, our method exploits the differences in polarization characteristics of stable navigation targets and fluctuating interfering targets. Theoretical analysis and model experiments demonstrate the constancy of the values of the ellipticity parameter of scattered waves, regardless of rain intensity, for both rain interferers and surface metallic objects. The practical application of our research results has great prospects, allowing detection regardless of the noise-to-signal ratio by including an additional channel for 45° or circularly polarized waves and implementing simple mathematical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bohren C, Huffman D (1983) In absorption and scattering of light by small particles. Wiley, Amsterdam

    Google Scholar 

  2. Qin Y, Chen Y (2019) Signal processing algorithm of ship navigation radar based on azimuth distance monitoring. Int J Metrol Qual Eng 10:12. https://doi.org/10.1051/ijmqe/2019010

    Article  Google Scholar 

  3. Tatarinov V (1996) Polarization invariants of the scattering matrix and stability of their statistical characteristics in the aperture synthesis problem. In: Proceedings of the European conference synthetic aperture radar, March 26–28, 1996, Königswinter, Germany, pp 113–115

    Google Scholar 

  4. Luneburg E, Cloude SR, Boerner W (1997) On the proper polarimetric scattering matrix formulation of the forward propagation versus backscattering radar systems description. In: IGARSS'97 1997 IEEE international geoscience and remote sensing symposium proceedings. Remote sensing: a scientific vision for sustainable development, Singapore, pp 1591–1593. https://doi.org/10.1109/IGARSS.1997.608965

  5. Liu G, Zhang X, Meng J (2019) A small ship target detection method based on polarimetric SAR. Remote Sens 11:2938. https://doi.org/10.3390/rs11242938

    Article  Google Scholar 

  6. Rosłoniec S (2023) Radiolocation and its basic principles. Springer, New York

    Book  Google Scholar 

  7. Jose J, Rekh A, Jose MJ (2021) Demonstrating antenna miniaturisation for radiolocation applications using double elliptical patches. Def Sci J 71:515–523

    Article  Google Scholar 

  8. Ayuso N, Cuesta R, Iglesia MA, Cuchí J, Lera F, Viñals-Yufera V, Tuset F, Villarroel JL (2022) A new radiolocation method for precise depth estimation and its application to the analysis of changes in groundwater levels in Colonia Clunia Sulpicia. Archaeol Prospect 29:1858. https://doi.org/10.1002/arp.1858

    Article  Google Scholar 

  9. Droszcz A, Jedrzejewski K, Kłos J, Kulpa K, Pożoga M (2021) Beamforming of LOFAR radio-telescope for passive radiolocation purposes. Rem Sens 13:810. https://doi.org/10.3390/rs13040810

    Article  Google Scholar 

  10. Travers D, Castles M, Sherrill W (1970) Radiolocation experiments in an urban environment. Electromag Compat IEEE Trans EMC 12:174–177. https://doi.org/10.1109/TEMC.1970.303054

    Article  Google Scholar 

  11. Antolovic D (2008) Directional radio response of a 802.11b device guided by radiolocation. In: Proceedings of the 1–4 conference: portable information devices, 2008 and the 2008 7th IEEE conference on polymers and adhesives in microelectronics and photonics. PORTABLE-POLYTRONIC 2008, 2nd IEEE international interdisciplinary conference. https://doi.org/10.1109/PORTABLEPOLYTRONIC.2008.4681258

  12. Antolovic D (2009) An algorithm for simultaneous radiolocation of multiple sources, pp 1–5. https://doi.org/10.1109/VETECF.2009.5378896

  13. Yu N, Ren H, Deng T, Fan X (2023) A lightweight radar ship detection framework with hybrid attentions. Rem Sens 15:2743. https://doi.org/10.3390/rs15112743

    Article  Google Scholar 

  14. Popov M, Stankevich S, Pylypchuk V, Xing K, Zhang C (2023) Unified approach to inshore ship detection in optical/radar medium spatial resolution satellite images. https://doi.org/10.1007/978-981-99-4098-1_8

  15. Xu X, Wu B, Xie L, Teixeira AP, Yan X (2023) A novel ship speed and heading estimation approach using radar sequential images. IEEE Trans Intell Transp Syst 12:1–14. https://doi.org/10.1109/TITS.2023.3281547

    Article  Google Scholar 

  16. Chen Z, Ding Z, Zhang X, Wang X, Zhou Y (2023) Inshore ship detection based on multi-modality saliency for synthetic aperture radar images. Rem Sens 15:3868. https://doi.org/10.3390/rs15153868

    Article  Google Scholar 

  17. Zhou Y, Liu H, Ma F, Pan Z, Zhang F (2023) A sidelobe-aware small ship detection network for synthetic aperture radar imagery. IEEE Trans Geosci Rem Sens 26:1. https://doi.org/10.1109/TGRS.2023.3264231

    Article  Google Scholar 

  18. Zhang T, Liu S, Ding Z, Gao Y, Zhu K (2022) A motion state judgment and radar imaging algorithm selection method for ship. IEEE Trans Geosci Rem Sens 60:1–18. https://doi.org/10.1109/TGRS.2022.3212674

    Article  Google Scholar 

  19. Protat A, Louf V, Soderholm J, Brook J, Ponsonby W (2022) Three-way calibration checks using ground-based, ship-based, and spaceborne radars. Atmos Measur Tech 15:915–926. https://doi.org/10.5194/amt-15-915-2022

    Article  Google Scholar 

  20. Wang Z, Zhang Y (2022) Estimation of ship berthing parameters based on multi-LiDAR and MMW radar data fusion. Ocean Eng 266:113155. https://doi.org/10.1016/j.oceaneng.2022.113155

    Article  Google Scholar 

  21. Melnyk O, Bychkovsky Y, Voloshyn A (2022) Maritime situational awareness as a key measure for safe ship operation. Sci J Silesian Univ Technol Ser Transp 114:91–101

    Google Scholar 

  22. Onyshchenko S, Melnyk O (2022) Efficiency of ship operation in transportation of oversized and heavy cargo by optimizing the speed mode considering the impact of weather conditions. Transp Telecommun 23(1):73–80. https://doi.org/10.2478/ttj-2022-0007

    Article  Google Scholar 

  23. Melnyk O, Onishchenko O, Onyshchenko S, Voloshyn A, Kalinichenko Y, Rossomakha O, Naleva G (2022) Autonomous ships concept and mathematical models application in their steering process control. TransNav 16(3):553–559. https://doi.org/10.12716/1001.16.03.18

    Article  Google Scholar 

  24. Melnyk O, Onyshchenko S (2022) Navigational safety assessment based on Markov-model approach. Sci J Mar Res 36(2):328–337

    Google Scholar 

  25. Melnyk O, Onyshchenko S, Onishchenko O, Lohinov O, Ocheretna V (2023) Integral approach to vulnerability assessment of ship’s critical equipment and systems. Trans Mar Sci 12(1):1287

    Google Scholar 

  26. Melnyk O, Onyshchenko S, Onishchenko O, Shumylo O, Voloshyn A, Koskina Y, Volianska Y (2022) Review of ship information security risks and safety of maritime transportation issues. TransNav 16(4):717–722. https://doi.org/10.12716/1001.16.04.13

    Article  Google Scholar 

  27. Melnyk O, Onishchenko O, Onyshchenko S, Golikov V, Sapiha V, Shcherbina O, Andrievska V (2022) Study of environmental efficiency of ship operation in terms of freight transportation effectiveness provision. TransNav Int J Mar Navig Saf Sea Transp 16(4):723–732

    Google Scholar 

  28. Melnyk O, Onishchenko O, Onyshchenko S, Shumylo O, Volyanskyy S, Bondar A, Cheredarchuk N (2023) Application of fuzzy controllers in automatic ship motion control systems. Int J Electr Comput Eng 13(4):3958–3968

    Google Scholar 

  29. Volyanskaya Y, Volyanskiy S, Volkov A, Onishchenko O (2017) Determining energy-efficient operation modes of the propulsion electrical motor of an autonomous swimming apparatus. East Eur J Enterp Technol 6(8–90):11–16

    Google Scholar 

  30. Golikov VA, Golikov VV, Volyanskaya Y, Mazur O, Onishchenko O (2018) A simple technique for identifying vessel model parameters. IOP Confer Ser Earth Environ Sci 172(1):012010. https://doi.org/10.1088/1755-1315/172/1/012010

    Article  Google Scholar 

  31. Budashko V, Nikolskyi V, Onishchenko O, Khniunin S (2016) Decision support system’s concept for design of combined propulsion complexes. East Eur J Enterp Technol 3(8–81):10–21

    Google Scholar 

  32. Budashko V, Obniavko T, Onishchenko O, Dovidenko Y, Ungarov D (2020) Main problems of creating energy-efficient positioning systems for multipurpose sea vessels. In: Proceedings of the 2020 IEEE 6th international conference on methods and systems of navigation and motion control, MSNMC 2020—proceedings, pp 106–109. https://doi.org/10.1109/MSNMC50359.2020.9255514

  33. Piterska V, Lohinov D, Lohinova L (2022) Risk management mechanisms in higher education institutions based on the information support of innovative projects. Int Sci Tech Confer Comput Sci Inform Technol 11:410–413. https://doi.org/10.1109/CSIT56902.2022.10000551

    Article  Google Scholar 

  34. Piterska V, Shakhov A, Lohinov O, Lohinova L (2020) The method of human resources management of educational projects of institution of higher education. Int Sci Tech Confer Comput Sci Inform Technol 2:123–126. https://doi.org/10.1109/CSIT49958.2020.9321912

    Article  Google Scholar 

  35. Alla B, Natalia B, Sergey B, Svitlana O (2020) Modelling of creation organisational energy-entropy. Int Sci Tech Confer Comput Sci Inform Technol 2:141–145. https://doi.org/10.1109/CSIT49958.2020.9321997

    Article  Google Scholar 

  36. Onyshchenko S, Bondar A, Andrievska V, Sudnyk N, Lohinov O (2019) Constructing and exploring the model to form the road map of enterprise development. East Eur J Enterp Technol 5(3–101):33–42

    Google Scholar 

  37. Bushuyev S, Onyshchenko S, Bushuyeva N, Bondar A (2021) Modelling projects portfolio structure dynamics of the organization development with a resistance of information entropy. Int Sci Techn Confer Comput Sci Inform Technol 2:293–298. https://doi.org/10.1109/CSIT52700.2021.9648713

    Article  Google Scholar 

  38. Bondar A, Onyshchenko S, Vishnevska O, Vishnevskyi D, Glovatska S, Zelenskyi A (2020) Constructing and investigating a model of the energy entropy dynamics of organizations. East Eur J Enterp Technol 3(3–105):50–56

    Google Scholar 

  39. Scherbina O, Drozhzhyn O, Yatsenko O, Shybaev O (2019) Cooperation forms between participants of the inland waterways cargo delivery: a case study of the dnieper region. Sci J Silesian Univ Technol Ser Transp 103:155–166

    Google Scholar 

  40. Shibaev A, Borovyk S, Mykhailova I (2020) Developing a strategy for modernizing passenger ships by the optimal distribution of funds. East Eur J Enterp Technol 6(3–108):33–41

    Google Scholar 

  41. Minchev DS, Gogorenko O, Varbanets RA, Moshentsev YL, Píštěk V, Kučera P, Shumylo OM, Kyrnats VI (2023) Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation. Proc Instit Mech Eng D J Autom Eng 237(2–3):572–584. https://doi.org/10.1177/09544070221075419

    Article  Google Scholar 

  42. Varbanets R, Shumylo O, Marchenko A, Minchev D, Kyrnats V, Zalozh V, Aleksandrovska N, Brusnyk R, Volovyk K (2022) Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines. Polish Mar Res 29(4):88–96. https://doi.org/10.2478/pomr-2022-0046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Melnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stetsenko, M. et al. (2024). Improving Navigation Safety by Utilizing Statistical Method of Target Detection on the Background of Atmospheric Precipitation. In: Lanka, S., Sarasa-Cabezuelo, A., Tugui, A. (eds) Trends in Sustainable Computing and Machine Intelligence. ICTSM 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-9436-6_8

Download citation

Publish with us

Policies and ethics