Skip to main content

Cell Wall-Anchored Surface Proteins of Staphylococcus aureus

  • Chapter
  • First Online:
Staphylococcus aureus
  • 57 Accesses

Abstract

Staphylococcus aureus expresses a plethora of proteins that are covalently anchored to cell wall peptidoglycan. They are classified on the basis of structural and functional properties. Several proteins are multifunctional. They promote adhesion to host cells and tissue, invasion of non-phagocytic host cells, evasion of innate and adaptive immune responses, biofilm formation and iron acquisition. Their roles in host colonization and pathogenesis of infectious diseases have been demonstrated in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aap:

Accumulation associated protein

AD:

Atopic dermatitis

AdsA:

Adenosine synthase

AFM:

Atomic force microscopy

CA-MRSA:

Community associated MRSA

CAUTI:

Catheter associated urinary tract infection

Clf:

Clumping factor

Cna:

Collagen binding adhesin

CWA:

Cell wall-anchored

dAMP:

2′-Deoxyadenosine 3′ monophosphate

DEv-IgG:

DE variant-immunoglobulin G fold

DLL:

Dock lock latch

ECM:

Extracellular matrix

Fg:

Fibrinogen

FIVAR:

Found in various architectures

Fn:

Fibronectin

FnBP:

Fibronectin binding protein

FnBR:

Fibronectin binding repeats

Gtf:

Glycosyltransferase

Isd:

Iron-regulated surface determinant

LPXTG:

Leucine, proline, any residue, threonine, glycine

MRSA:

Methicillin resistant Staphylococcus aureus

MSCRAMM:

Microbial surface component recognizing adhesive matrix molecules

NEAT:

Near transporter

NET:

Neutrophil extracellular trap

Neu5AC:

N-acetyl neuraminic acid

Plg:

Plasminogen

RGD:

Arginine glycine aspartate

Sbi:

Second immunoglobulin binding protein

SCCmec:

Staphylococcal chromosome cassette, methicillin resistance

SCV:

Small colony variant

Sdr:

Serine rich repeat protein

Spa:

Staphylococcal protein A

SraP:

Serine rich adhesin for platelets

SSR1:

Short serine-rich repeat region

WTA:

Wall teichoic acid

References

  1. Krismer B, Weidenmaier C, Zipperer A, Peschel A (2017) The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15(11):675–687. https://doi.org/10.1038/nrmicro.2017.104

    Article  CAS  PubMed  Google Scholar 

  2. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344(1):11–16. https://doi.org/10.1056/nejm200101043440102

    Article  Google Scholar 

  3. Peacock SJ, de Silva I, Lowy FD (2001) What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9(12):605–610. https://doi.org/10.1016/s0966-842x(01)02254-5

    Article  CAS  PubMed  Google Scholar 

  4. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/nejm199808203390806

    Article  CAS  PubMed  Google Scholar 

  5. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7(9):629–641. https://doi.org/10.1038/nrmicro2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119(9):2464–2474. https://doi.org/10.1172/jci38226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diep BA, Otto M (2008) The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16(8):361–369. https://doi.org/10.1016/j.tim.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heilbronner S, Holden MT, van Tonder A, Geoghegan JA, Foster TJ, Parkhill J et al (2011) Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett 322(1):60–67. https://doi.org/10.1111/j.1574-6968.2011.02339.x

    Article  CAS  PubMed  Google Scholar 

  9. Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V et al (2005) Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 151(Pt 5):1453–1464. https://doi.org/10.1099/mic.0.27534-0

    Article  CAS  PubMed  Google Scholar 

  10. Hammer ND, Skaar EP (2011) Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147. https://doi.org/10.1146/annurev-micro-090110-102851

    Article  CAS  PubMed  Google Scholar 

  11. Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W et al (2004) Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 186(13):4085–4099. https://doi.org/10.1128/jb.186.13.4085-4099.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J et al (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299(5608):906–909. https://doi.org/10.1126/science.1081147

    Article  CAS  PubMed  Google Scholar 

  13. Schneewind O, Missiakas D (2014) Sec-secretion and sortase-mediated anchoring of proteins in gram-positive bacteria. Biochim Biophys Acta 1843(8):1687–1697. https://doi.org/10.1016/j.bbamcr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  14. Patti JM, Allen BL, McGavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617. https://doi.org/10.1146/annurev.mi.48.100194.003101

    Article  CAS  PubMed  Google Scholar 

  15. Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12(1):49–62. https://doi.org/10.1038/nrmicro3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deivanayagam CC, Wann ER, Chen W, Carson M, Rajashankar KR, Hook M et al (2002) A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21(24):6660–6672. https://doi.org/10.1093/emboj/cdf619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D et al (2003) A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115(2):217–228. https://doi.org/10.1016/s0092-8674(03)00809-2

    Article  CAS  PubMed  Google Scholar 

  18. Ganesh VK, Barbu EM, Deivanayagam CC, Le B, Anderson AS, Matsuka YV et al (2011) Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 286(29):25963–25972. https://doi.org/10.1074/jbc.M110.217414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bingham RJ, Rudino-Pinera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Hook M et al (2008) Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci U S A 105(34):12254–12258. https://doi.org/10.1073/pnas.0803556105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L et al (2012) Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog 8(6):e1002751. https://doi.org/10.1371/journal.ppat.1002751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herman P, El-Kirat-Chatel S, Beaussart A, Geoghegan JA, Foster TJ, Dufrene YF (2014) The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol Microbiol 93(2):356–368. https://doi.org/10.1111/mmi.12663

    Article  CAS  PubMed  Google Scholar 

  22. Vitry P, Valotteau C, Feuillie C, Bernard S, Alsteens D, Geoghegan JA et al (2017) Force-induced strengthening of the interaction between Staphylococcus aureus clumping factor B and loricrin. MBio 8(6):e01748–e01717. https://doi.org/10.1128/mbio.01748-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Casillas-Ituarte NN, DiBartola AC, Broughton MJ, Perez-Guzman L, Wheeler RM, Ibaraki M et al (2019) Fibrinogen binding is affected by amino acid substitutions in C-terminal repeat region of fibronectin binding protein a. Sci Rep 9(1):11619. https://doi.org/10.1038/s41598-019-48031-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganesh VK, Rivera JJ, Smeds E, Ko YP, Bowden MG, Wann ER et al (2008) A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog 4(11):e1000226. https://doi.org/10.1371/journal.ppat.1000226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ganesh VK, Liang X, Geoghegan JA, Cohen AL, Venugopalan N, Foster TJ et al (2016) Lessons from the crystal structure of the S. aureus surface protein clumping factor a in complex with tefibazumab, an inhibiting monoclonal antibody. EBioMedicine 13:328–338. https://doi.org/10.1016/j.ebiom.2016.09.027

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W et al (2017) Staphylococcus aureus SdrE captures complement factor H’s C-terminus via a novel ‘close, dock, lock and latch’ mechanism for complement evasion. Biochem J 474(10):1619–1631. https://doi.org/10.1042/bcj20170085

    Article  CAS  PubMed  Google Scholar 

  27. Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ et al (2012) Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 8(12):e1003092. https://doi.org/10.1371/journal.ppat.1003092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burke FM, McCormack N, Rindi S, Speziale P, Foster TJ (2010) Fibronectin-binding protein B variation in Staphylococcus aureus. BMC Microbiol 10:160. https://doi.org/10.1186/1471-2180-10-160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keane FM, Loughman A, Valtulina V, Brennan M, Speziale P, Foster TJ (2007) Fibrinogen and elastin bind to the same region within the a domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus. Mol Microbiol 63(3):711–723. https://doi.org/10.1111/j.1365-2958.2006.05552.x

    Article  CAS  PubMed  Google Scholar 

  30. Zong Y, Xu Y, Liang X, Keene DR, Hook A, Gurusiddappa S et al (2005) A ‘Collagen Hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24(24):4224–4236. https://doi.org/10.1038/sj.emboj.7600888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D, Foster TJ et al (2016) Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. MBio 7(5):e01529–e01516. https://doi.org/10.1128/mbio.01529-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V et al (2017) Single-cell and single-molecule analysis unravels the multifunctionality of the Staphylococcus aureus collagen-binding protein Cna. ACS Nano 11(2):2160–2170. https://doi.org/10.1021/acsnano.6b08404

    Article  CAS  PubMed  Google Scholar 

  33. Geoghegan JA, Monk IR, O’Gara JP, Foster TJ (2013) Subdomains N2N3 of fibronectin binding protein a mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 195(11):2675–2683. https://doi.org/10.1128/JB.02128-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barbu EM, Mackenzie C, Foster TJ, Hook M (2014) SdrC induces staphylococcal biofilm formation through a homophilic interaction. Mol Microbiol 94(1):172–185. https://doi.org/10.1111/mmi.12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A et al (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190(11):3835–3850. https://doi.org/10.1128/jb.00167-08

    Article  PubMed  PubMed Central  Google Scholar 

  36. Feuillie C, Formosa-Dague C, Hays LM, Vervaeck O, Derclaye S, Brennan MP et al (2017) Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC. Proc Natl Acad Sci U S A 114(14):3738–3743. https://doi.org/10.1073/pnas.1616805114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbu EM, Ganesh VK, Gurusiddappa S, Mackenzie RC, Foster TJ, Sudhof TC et al (2010) β-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog 6(1):e1000726. https://doi.org/10.1371/journal.ppat.1000726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrene YF (2015) Staphylococcus aureus fibronectin-binding protein a mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 6(3):e00413–e00415. https://doi.org/10.1128/mbio.00413-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA et al (2016) Molecular interactions of human plasminogen with fibronectin-binding protein B (FnBPB), a fibrinogen/fibronectin-binding protein from Staphylococcus aureus. J Biol Chem 291(35):18148–18162. https://doi.org/10.1074/jbc.M116.731125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herman-Bausier P, Pietrocola G, Foster TJ, Speziale P, Dufrene YF (2017) Fibrinogen activates the capture of human plasminogen by staphylococcal fibronectin-binding proteins. MBio 8(5):e01067–e01017. https://doi.org/10.1128/mbio.01067-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pietrocola G, Nobile G, Alfeo MJ, Foster TJ, Geoghegan JA, De Filippis V et al (2019) Fibronectin-binding protein B (FnBPB) from Staphylococcus aureus protects against the antimicrobial activity of histones. J Biol Chem 294(10):3588–3602. https://doi.org/10.1074/jbc.ra118.005707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Josefsson E, McCrea KW, Ni Eidhin D, O'Connell D, Cox J, Hook M et al (1998) Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144(Pt 12):3387–3395. https://doi.org/10.1099/00221287-144-12-3387

    Article  CAS  PubMed  Google Scholar 

  43. Josefsson E, O'Connell D, Foster TJ, Durussel I, Cox JA (1998) The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus. J Biol Chem 273(47):31145–31152. https://doi.org/10.1074/jbc.273.47.31145

    Article  CAS  PubMed  Google Scholar 

  44. Herman-Bausier P, Dufrene YF (2016) Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol Microbiol 99(3):611–621. https://doi.org/10.1111/mmi.13254

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Ge J, Liu B, Hu Y, Yang M (2013) Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands. Protein Cell 4(4):277–285. https://doi.org/10.1007/s13238-013-3009-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR (1999) Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145(Pt 12):3477–3486. https://doi.org/10.1099/00221287-145-12-3477

    Article  CAS  PubMed  Google Scholar 

  47. Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P et al (1999) Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol 1(2):101–117. https://doi.org/10.1046/j.1462-5822.1999.00011.x

    Article  CAS  PubMed  Google Scholar 

  48. Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, Bohach GA (1999) Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 67(9):4673–4678. https://doi.org/10.1128/iai.67.9.4673-4678.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Hook M (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell β1 integrins. Eur J Cell Biol 79(10):672–679. https://doi.org/10.1078/0171-9335-00104

    Article  CAS  PubMed  Google Scholar 

  50. Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR (2005) Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci 118(Pt 10):2189–2200. https://doi.org/10.1242/jcs.02328

    Article  CAS  PubMed  Google Scholar 

  51. Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M et al (2002) Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 146(6):943–951. https://doi.org/10.1046/j.1365-2133.2002.04752.x

    Article  CAS  PubMed  Google Scholar 

  52. Jett BD, Gilmore MS (2002) Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infect Immun 70(8):4697–4700. https://doi.org/10.1128/IAI.70.8.4697-4700.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, Nair SP (2001) Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69(5):2872–2877. https://doi.org/10.1128/IAI.69.5.2872-2877.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sendi P, Proctor RA (2009) Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17(2):54–58. https://doi.org/10.1016/j.tim.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  55. Guerillot R, Kostoulias X, Donovan L, Li L, Carter GP, Hachani A et al (2019) Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections. Proc Natl Acad Sci U S A 16(40):20135–20140. https://doi.org/10.1073/pnas.1904861116

    Article  CAS  Google Scholar 

  56. Vaudaux P, Francois P, Bisognano C, Kelley WL, Lew DP, Schrenzel J et al (2002) Increased expression of clumping factor and fibronectin-binding proteins by hemB mutants of Staphylococcus aureus expressing small colony variant phenotypes. Infect Immun 70(10):5428–5437. https://doi.org/10.1128/iai.70.10.5428-5437.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Henderson B, Nair S, Pallas J, Williams MA (2011) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35(1):147–200. https://doi.org/10.1111/j.1574-6976.2010.00243.x

    Article  CAS  PubMed  Google Scholar 

  58. Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NA, Potts JR et al (2016) Allosteric regulation of fibronectin/α5β1 interaction by fibronectin-binding MSCRAMMs. PLoS One 11(7):e0159118. https://doi.org/10.1371/journal.pone.0159118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9(1):5–11. https://doi.org/10.1016/j.mib.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  60. Schwarz-Linek U, Hook M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52(3):631–641. https://doi.org/10.1111/j.1365-2958.2004.04027.x

    Article  CAS  PubMed  Google Scholar 

  61. Hartford O, Francois P, Vaudaux P, Foster TJ (1997) The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 25(6):1065–1076. https://doi.org/10.1046/j.1365-2958.1997.5291896.x

    Article  CAS  PubMed  Google Scholar 

  62. Hazenbos WL, Kajihara KK, Vandlen R, Morisaki JH, Lehar SM, Kwakkenbos MJ et al (2013) Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 9(10):e1003653. https://doi.org/10.1371/journal.ppat.1003653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S et al (2014) N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J Biol Chem 289(6):3478–3486. https://doi.org/10.1074/jbc.m113.532655

    Article  CAS  PubMed  Google Scholar 

  64. McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276(32):29969–29978. https://doi.org/10.1074/jbc.M102389200

    Article  CAS  PubMed  Google Scholar 

  65. McCormack N, Foster TJ, Geoghegan JA (2014) A short sequence within subdomain N1 of region a of the Staphylococcus aureus MSCRAMM clumping factor a is required for export and surface display. Microbiology 160(Pt 4):659–670. https://doi.org/10.1099/mic.0.074724-0

    Article  CAS  PubMed  Google Scholar 

  66. Cassat JE, Skaar EP (2012) Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 34(2):215–235. https://doi.org/10.1007/s00281-011-0294-4

    Article  CAS  PubMed  Google Scholar 

  67. Grigg JC, Ukpabi G, Gaudin CF, Murphy ME (2010) Structural biology of heme binding in the Staphylococcus aureus Isd system. J Inorg Biochem 104(3):341–348. https://doi.org/10.1016/j.jinorgbio.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  68. Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR et al (2006) Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 193(8):1098–1108. https://doi.org/10.1086/501471

    Article  CAS  PubMed  Google Scholar 

  69. Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ et al (2007) The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1(3):199–212. https://doi.org/10.1016/j.chom.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  70. Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ (2010) Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156(Pt 3):920–928. https://doi.org/10.1099/mic.0.036673-0

    Article  CAS  PubMed  Google Scholar 

  71. Zapotoczna M, Jevnikar Z, Miajlovic H, Kos J, Foster TJ (2013) Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 15(6):1026–1041. https://doi.org/10.1111/cmi.12097

    Article  CAS  PubMed  Google Scholar 

  72. Visai L, Yanagisawa N, Josefsson E, Tarkowski A, Pezzali I, Rooijakkers SH et al (2009) Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology 155(Pt 3):667–679. https://doi.org/10.1099/mic.0.025684-0

    Article  CAS  PubMed  Google Scholar 

  73. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB et al (2000) Crystal structure of a Staphylococcus aureus protein a domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97(10):5399–5404. https://doi.org/10.1073/pnas.97.10.5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gomez MI, O'Seaghdha M, Magargee M, Foster TJ, Prince AS (2006) Staphylococcus aureus protein a activates TNFR1 signaling through conserved IgG binding domains. J Biol Chem 281(29):20190–20196. https://doi.org/10.1074/jbc.m601956200

    Article  CAS  PubMed  Google Scholar 

  75. Silverman GJ, Goodyear CS (2006) Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6(6):465–475. https://doi.org/10.1038/nri1853

    Article  CAS  PubMed  Google Scholar 

  76. O'Seaghdha M, van Schooten CJ, Kerrigan SW, Emsley J, Silverman GJ, Cox D et al (2006) Staphylococcus aureus protein a binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 273(21):4831–4841. https://doi.org/10.1111/j.1742-4658.2006.05482.x

    Article  CAS  PubMed  Google Scholar 

  77. Deis LN, Wu Q, Wang Y, Qi Y, Daniels KG, Zhou P et al (2015) Suppression of conformational heterogeneity at a protein-protein interface. Proc Natl Acad Sci U S A 112(29):9028–9033. https://doi.org/10.1073/pnas.1424724112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin FJ, Gomez MI, Wetzel DM, Memmi G, O’Seaghdha M, Soong G et al (2009) Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A. J Clin Invest 119(7):1931–1939. https://doi.org/10.1172/jci35879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernado P et al (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283(25):17579–17593. https://doi.org/10.1074/jbc.m800265200

    Article  CAS  PubMed  Google Scholar 

  80. Smith EJ, Corrigan RM, van der Sluis T, Grundling A, Speziale P, Geoghegan JA et al (2012) The immune evasion protein Sbi of Staphylococcus aureus occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid. Mol Microbiol 83(4):789–804. https://doi.org/10.1111/j.1365-2958.2011.07966.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Upadhyay A, Burman JD, Clark EA, Leung E, Isenman DE, van den Elsen JM et al (2008) Structure-function analysis of the C3 binding region of Staphylococcus aureus immune subversion protein Sbi. J Biol Chem 283(32):22113–22120. https://doi.org/10.1074/jbc.M802636200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Werbick C, Becker K, Mellmann A, Juuti KM, von Eiff C, Peters G et al (2007) Staphylococcal chromosomal cassette mec type I, spa type, and expression of Pls are determinants of reduced cellular invasiveness of methicillin-resistant Staphylococcus aureus isolates. J Infect Dis 195(11):1678–1685. https://doi.org/10.1086/517517

    Article  CAS  PubMed  Google Scholar 

  83. Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D et al (2007) Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189(7):2793–2804. https://doi.org/10.1128/jb.00952-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Corrigan RM, Rigby D, Handley P, Foster TJ (2007) The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153(Pt 8):2435–2446. https://doi.org/10.1099/mic.0.2007/006676-0

    Article  CAS  PubMed  Google Scholar 

  85. Juuti KM, Sinha B, Werbick C, Peters G, Kuusela PI (2004) Reduced adherence and host cell invasion by methicillin-resistant Staphylococcus aureus expressing the surface protein Pls. J Infect Dis 189(9):1574–1584. https://doi.org/10.1086/383348

    Article  CAS  PubMed  Google Scholar 

  86. Roche FM, Meehan M, Foster TJ (2003) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149(Pt 10):2759–2767. https://doi.org/10.1099/mic.0.26412-0

    Article  CAS  PubMed  Google Scholar 

  87. Kwiecinski JM, Crosby HA, Valotteau C, Hippensteel JA, Nayak MK, Chauhan AK et al (2019) Staphylococcus aureus adhesion in endovascular infections is controlled by the ArlRS-MgrA signaling cascade. PLoS Pathog 15(5):e1007800. https://doi.org/10.1371/journal.ppat.1007800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huesca M, Peralta R, Sauder DN, Simor AE, McGavin MJ (2002) Adhesion and virulence properties of epidemic Canadian methicillin-resistant Staphylococcus aureus strain 1: identification of novel adhesion functions associated with plasmin-sensitive surface protein. J Infect Dis 185(9):1285–1296. https://doi.org/10.1086/340123

    Article  PubMed  Google Scholar 

  89. Schaeffer CR, Woods KM, Longo GM, Kiedrowski MR, Paharik AE, Buttner H et al (2015) Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun 83(1):214–226. https://doi.org/10.1128/iai.02177-14

    Article  PubMed  Google Scholar 

  90. Conlon BP, Geoghegan JA, Waters EM, McCarthy H, Rowe SE, Davies JR et al (2014) Role for the a domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype. J Bacteriol 196(24):4268–4275. https://doi.org/10.1128/jb.01946-14

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gruszka DT, Whelan F, Farrance OE, Fung HK, Paci E, Jeffries CM et al (2015) Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nat Commun 6:7271. https://doi.org/10.1038/ncomms8271

    Article  CAS  PubMed  Google Scholar 

  92. Gruszka DT, Wojdyla JA, Bingham RJ, Turkenburg JP, Manfield IW, Steward A et al (2012) Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proc Natl Acad Sci U S A 109(17):E1011–E1018. https://doi.org/10.1073/pnas.1119456109

    Article  PubMed  PubMed Central  Google Scholar 

  93. Conrady DG, Wilson JJ, Herr AB (2013) Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 110(3):E202–E211. https://doi.org/10.1073/pnas.1208134110

    Article  PubMed  Google Scholar 

  94. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA et al (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55(6):1883–1895. https://doi.org/10.1111/j.1365-2958.2005.04515.x

    Article  CAS  PubMed  Google Scholar 

  95. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR et al (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192(21):5663–5673. https://doi.org/10.1128/jb.00628-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrene YF (2016) Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A 113(2):410–415. https://doi.org/10.1073/pnas.1519265113

    Article  CAS  PubMed  Google Scholar 

  97. Lizcano A, Sanchez CJ, Orihuela CJ (2012) A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol 27(4):257–269. https://doi.org/10.1111/j.2041-1014.2012.00653.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang YH, Jiang YL, Zhang J, Wang L, Bai XH, Zhang SJ et al (2014) Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 10(6):e1004169. https://doi.org/10.1371/journal.ppat.1004169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kukita K, Kawada-Matsuo M, Oho T, Nagatomo M, Oogai Y, Hashimoto M et al (2013) Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva. Infect Immun 81(6):1870–1879. https://doi.org/10.1128/iai.00011-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206(11):2417–2427. https://doi.org/10.1084/jem.20090097

    Article  PubMed  PubMed Central  Google Scholar 

  101. Thammavongsa V, Schneewind O, Missiakas DM (2011) Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem 12:56. https://doi.org/10.1186/1471-2091-12-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  103. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342(6160):863–866. https://doi.org/10.1126/science.1242255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2(6):576–586. https://doi.org/10.1159/000319909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Falkow S (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276. https://doi.org/10.1093/cid/10.supplement_2.s274

    Article  PubMed  Google Scholar 

  106. Monk IR, Foster TJ (2012) Genetic manipulation of staphylococci-breaking through the barrier. Front Cell Infect Microbiol 2:49. https://doi.org/10.3389/fcimb.2012.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3(2):e00277–e00211. https://doi.org/10.1128/mbio.00277-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ (2015) Complete bypass of restriction systems for major Staphylococcus aureus lineages. MBio 6(3):e00308–e00315. https://doi.org/10.1128/mbio.00308-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Parker D (2017) Humanized mouse models of Staphylococcus aureus infection. Front Immunol 8:512. https://doi.org/10.3389/fimmu.2017.00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pishchany G, McCoy AL, Torres VJ, Krause JC, Crowe JE Jr, Fabry ME et al (2010) Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8(6):544–550. https://doi.org/10.1016/j.chom.2010.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsai YH, Disson O, Bierne H, Lecuit M (2013) Murinization of internalin extends its receptor repertoire, altering listeria monocytogenes cell tropism and host responses. PLoS Pathog 9(5):e1003381. https://doi.org/10.1371/journal.ppat.1003381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM (2009) Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23(10):3393–4404. https://doi.org/10.1096/fj.09-135467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng AG, DeDent AC, Schneewind O, Missiakas D (2011) A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19(5):225–232. https://doi.org/10.1016/j.tim.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Grundmeier M, Hussain M, Becker P, Heilmann C, Peters G, Sinha B (2004) Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 72(12):7155–7163. https://doi.org/10.1128/IAI.72.12.7155-7163.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rhem MN, Lech EM, Patti JM, McDevitt D, Hook M, Jones DB et al (2000) The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis. Infect Immun 68(6):3776–3779. https://doi.org/10.1128/IAI.68.6.3776-3779.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Ryden C et al (1994) The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62(1):152–161. https://doi.org/10.1128/iai.62.1.152-161.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu Y, Rivas JM, Brown EL, Liang X, Hook M (2004) Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J Infect Dis 189(12):2323–2333. https://doi.org/10.1086/420851

    Article  CAS  PubMed  Google Scholar 

  118. Kang M, Ko YP, Liang X, Ross CL, Liu Q, Murray BE et al (2013) Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288(28):20520–20531. https://doi.org/10.1074/jbc.m113.454462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Josefsson E, Higgins J, Foster TJ, Tarkowski A (2008) Fibrinogen binding sites P336 and Y338 of clumping factor a are crucial for Staphylococcus aureus virulence. PLoS One 3(5):e2206. https://doi.org/10.1371/journal.pone.0002206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ (2002) Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4(11):759–770. https://doi.org/10.1046/j.1462-5822.2002.00231.x

    Article  CAS  PubMed  Google Scholar 

  121. Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22. https://doi.org/10.1186/1471-2180-9-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Que YA, Haefliger JA, Piroth L, Francois P, Widmer E, Entenza JM et al (2005) Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201(10):1627–1635. https://doi.org/10.1084/jem.20050125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sinha B, Francois P, Que YA, Hussain M, Heilmann C, Moreillon P et al (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68(12):6871–6878. https://doi.org/10.1128/iai.68.12.6871-6878.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lower SK, Lamlertthon S, Casillas-Ituarte NN, Lins RD, Yongsunthon R, Taylor ES et al (2011) Polymorphisms in fibronectin binding protein a of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci U S A 108(45):18372–18377. https://doi.org/10.1073/pnas.1109071108

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hos NJ, Rieg S, Kern WV, Jonas D, Fowler VG, Higgins PG et al (2015) Amino acid alterations in fibronectin binding protein a (FnBPA) and bacterial genotype are associated with cardiac device related infection in Staphylococcus aureus bacteraemia. J Infect 70(2):153–159. https://doi.org/10.1016/j.jinf.2014.09.005

    Article  PubMed  Google Scholar 

  126. Eichenberger EM, Thaden JT, Sharma-Kuinkel B, Park LP, Rude TH, Ruffin F et al (2015) Polymorphisms in fibronectin binding proteins a and B among Staphylococcus aureus bloodstream isolates are not associated with arthroplasty infection. PLoS One 10(11):e0141436. https://doi.org/10.1371/journal.pone.0141436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xiong YQ, Sharma-Kuinkel BK, Casillas-Ituarte NN, Fowler VG Jr, Rude T, DiBartola AC et al (2015) Endovascular infections caused by methicillin-resistant Staphylococcus aureus are linked to clonal complex-specific alterations in binding and invasion domains of fibronectin-binding protein a as well as the occurrence of fnbB. Infect Immun 83(12):4772–4780. https://doi.org/10.1128/iai.01074-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walker JN, Flores-Mireles AL, Pinkner CL, Schreiber HL, Joens MS, Park AM et al (2017) Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci U S A 114(41):E8721–E8730. https://doi.org/10.1073/pnas.1707572114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lacey KA, Mulcahy ME, Towell AM, Geoghegan JA, McLoughlin RM (2019) Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog 15(4):e1007713. https://doi.org/10.1371/journal.ppat.1007713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA et al (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364(9435):703–705. https://doi.org/10.1016/s0140-6736(04)16897-9

    Article  PubMed  Google Scholar 

  131. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL et al (2009) Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis 199(12):1820–1826. https://doi.org/10.1086/599119

    Article  PubMed  Google Scholar 

  132. Sivaraman K, Venkataraman N, Cole AM (2009) Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol 4(8):999–1008. https://doi.org/10.2217/fmb.09.79

    Article  PubMed  Google Scholar 

  133. Weidenmaier C, Goerke C, Wolz C (2012) Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20(5):243–250. https://doi.org/10.1016/j.tim.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  134. Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C et al (2014) A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10(5):e1004089. https://doi.org/10.1371/journal.ppat.1004089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Winstel V, Kuhner P, Salomon F, Larsen J, Skov R, Hoffmann W et al (2015) Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. MBio 6(4):e00632. https://doi.org/10.1128/mbio.00632-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wertheim HF, Walsh E, Choudhurry R, Melles DC, Boelens HA, Miajlovic H et al (2008) Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5(1):e17. https://doi.org/10.1371/journal.pmed.0050017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li M, Du X, Villaruz AE, Diep BA, Wang D, Song Y et al (2012) MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18(5):816–819. https://doi.org/10.1038/nm.2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Savolainen K, Paulin L, Westerlund-Wikstrom B, Foster TJ, Korhonen TK, Kuusela P (2001) Expression of pls, a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus, prevents bacterial adhesion in vitro. Infect Immun 69(5):3013–3020. https://doi.org/10.1128/IAI.69.5.3013-3020.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA et al (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188(2):669–676. https://doi.org/10.1128/jb.188.2.669-676.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Walsh EJ, O'Brien LM, Liang X, Hook M, Foster TJ (2004) Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 279(49):50691–50699. https://doi.org/10.1074/jbc.m408713200

    Article  CAS  PubMed  Google Scholar 

  141. Clarke SR, Andre G, Walsh EJ, Dufrene YF, Foster TJ, Foster SJ (2009) Iron-regulated surface determinant protein a mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77(6):2408–2416. https://doi.org/10.1128/iai.01304-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Askarian F, Uchiyama S, Valderrama JA, Ajayi C, Sollid JU, van Sorge NM et al (2017) Serine-aspartate repeat protein D increases Staphylococcus aureus virulence and survival in blood. Infect Immun 85(1):e00559–e00516. https://doi.org/10.1128/iai.00559-16

    Article  CAS  PubMed  Google Scholar 

  143. Ishida-Yamamoto A, Igawa S (2015) The biology and regulation of corneodesmosomes. Cell Tissue Res 360(3):477–482. https://doi.org/10.1007/s00441-014-2037-z

    Article  CAS  PubMed  Google Scholar 

  144. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859. https://doi.org/10.1101/gr.131029.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ong PY, Leung DY (2016) Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol 51(3):329–337. https://doi.org/10.1007/s12016-016-8548-5

    Article  CAS  PubMed  Google Scholar 

  146. Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE et al (2017) Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun 85(6):e00994–e00916. https://doi.org/10.1128/iai.00994-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Riethmuller C, McAleer MA, Koppes SA, Abdayem R, Franz J, Haftek M et al (2015) Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J Allergy Clin Immunol 136(6):1573–1580.e2. https://doi.org/10.1016/j.jaci.2015.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Forsgren A, Quie PG (1974) Effects of staphylococcal protein a on heat labile opsonins. J Immunol 112(3):1177–1180

    Article  CAS  PubMed  Google Scholar 

  149. Cedergren L, Andersson R, Jansson B, Uhlen M, Nilsson B (1993) Mutational analysis of the interaction between staphylococcal protein a and human IgG1. Protein Eng 6(4):441–448. https://doi.org/10.1093/protein/6.4.441

    Article  CAS  PubMed  Google Scholar 

  150. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ (2017) C1q: a fresh look upon an old molecule. Mol Immunol 89:73–83. https://doi.org/10.1016/j.molimm.2017.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116(2):241–249. https://doi.org/10.1016/j.jaci.2005.05.036

    Article  CAS  PubMed  Google Scholar 

  152. Hair PS, Echague CG, Sholl AM, Watkins JA, Geoghegan JA, Foster TJ et al (2010) Clumping factor a interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infect Immun 78(4):1717–1727. https://doi.org/10.1128/iai.01065-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hair PS, Ward MD, Semmes OJ, Foster TJ, Cunnion KM (2008) Staphylococcus aureus clumping factor a binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis 198(1):125–133. https://doi.org/10.1086/588825

    Article  CAS  PubMed  Google Scholar 

  154. Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA et al (2012) Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One 7(5):e38407. https://doi.org/10.1371/journal.pone.0038407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005) Anti-opsonic properties of staphylokinase. Microbes Infect 7(3):476–484. https://doi.org/10.1016/j.micinf.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  156. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM (2013) Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26(3):422–447. https://doi.org/10.1128/cmr.00104-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Votintseva AA, Fung R, Miller RR, Knox K, Godwin H, Wyllie DH et al (2014) Prevalence of Staphylococcus aureus protein a (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol 14:63. https://doi.org/10.1186/1471-2180-14-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cole AL, Muthukrishnan G, Chong C, Beavis A, Eade CR, Wood MP et al (2016) Host innate inflammatory factors and staphylococcal protein a influence the duration of human Staphylococcus aureus nasal carriage. Mucosal Immunol 9(6):1537–1548. https://doi.org/10.1038/mi.2016.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Becker S, Frankel MB, Schneewind O, Missiakas D (2014) Release of protein a from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 111(4):1574–1579. https://doi.org/10.1073/pnas.1317181111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim HK, Falugi F, Missiakas DM, Schneewind O (2016) Peptidoglycan-linked protein a promotes T cell-dependent antibody expansion during Staphylococcus aureus infection. Proc Natl Acad Sci U S A 113(20):5718–5723. https://doi.org/10.1073/pnas.1524267113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. O'Halloran DP, Wynne K, Geoghegan JA (2015) Protein a is released into the Staphylococcus aureus culture supernatant with an unprocessed sorting signal. Infect Immun 83(4):1598–1609. https://doi.org/10.1128/iai.03122-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C et al (2014) Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. J Exp Med 211(12):2331–2339. https://doi.org/10.1084/jem.20141404

    Article  PubMed  PubMed Central  Google Scholar 

  163. Missiakas D, Schneewind O (2016) Staphylococcus aureus vaccines: deviating from the carol. J Exp Med 213(9):1645–1653. https://doi.org/10.1084/jem.20160569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Geoghegan JA, Foster TJ (2015) Cell wall-anchored surface proteins of Staphylococcus aureus: many proteins, multiple functions. Curr Top Microbiol Immunol 409:95–120. https://doi.org/10.1007/82_2015_5002

    Article  CAS  Google Scholar 

  165. Josefsson E, Hartford O, O’Brien L, Patti JM, Foster T (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor a, a novel virulence determinant. J Infect Dis 184(12):1572–1580. https://doi.org/10.1086/324430

    Article  CAS  PubMed  Google Scholar 

  166. Nilsson IM, Patti JM, Bremell T, Hook M, Tarkowski A (1998) Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J Clin Invest 101(12):2640–2649. https://doi.org/10.1172/jci1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103(45):16942–16947. https://doi.org/10.1073/pnas.0606863103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O (2010) Nontoxigenic protein a vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 207(9):1863–1870. https://doi.org/10.1084/jem.20092514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D et al (2012) Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 8(11):1585–1594. https://doi.org/10.4161/hv.21872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jansen KU, Girgenti DQ, Scully IL, Anderson AS (2013) Vaccine review: “Staphyloccocus aureus vaccines: problems and prospects”. Vaccine 31(25):2723–2730. https://doi.org/10.1016/j.vaccine.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  171. Levy J, Licini L, Haelterman E, Moris P, Lestrate P, Damaso S et al (2015) Safety and immunogenicity of an investigational 4-component Staphylococcus aureus vaccine with or without AS03B adjuvant: results of a randomized phase I trial. Hum Vaccin Immunother 11(3):620–631. https://doi.org/10.1080/21645515.2015.1011021

    Article  PubMed  PubMed Central  Google Scholar 

  172. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW et al (2013) Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309(13):1368–1378. https://doi.org/10.1001/jama.2013.3010

    Article  CAS  PubMed  Google Scholar 

  173. Bagnoli F, Bertholet S, Grandi G (2012) Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2:16. https://doi.org/10.3389/fcimb.2012.00016

    Article  PubMed  PubMed Central  Google Scholar 

  174. Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O et al (2017) Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 15(5):1009–1019. https://doi.org/10.1111/jth.13653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ (2008) Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the αC-domain of human fibrinogen. Microbiology 154(Pt 2):550–558. https://doi.org/10.1099/mic.0.2007/010868-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ et al (2011) Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 286(34):29797–29805. https://doi.org/10.1074/jbc.m110.214981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burke FM, Di Poto A, Speziale P, Foster TJ (2011) The a domain of fibronectin-binding protein B of Staphylococcus aureus contains a novel fibronectin binding site. FEBS J 278(13):2359–2371. https://doi.org/10.1111/j.1742-4658.2011.08159.x

    Article  CAS  PubMed  Google Scholar 

  178. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES et al (2003) Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature 423(6936):177–181. https://doi.org/10.1038/nature01589

    Article  CAS  PubMed  Google Scholar 

  179. Clarke SR, Wiltshire MD, Foster SJ (2004) IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51(5):1509–1519. https://doi.org/10.1111/j.1365-2958.2003.03938.x

    Article  CAS  PubMed  Google Scholar 

  180. Clarke SR, Foster SJ (2008) IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect Immun 76(4):1518–1526. https://doi.org/10.1128/IAI.01530-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pilpa RM, Robson SA, Villareal VA, Wong ML, Phillips M, Clubb RT (2009) Functionally distinct NEAT (NEAr transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem 284(2):1166–1176. https://doi.org/10.1074/jbc.M806007200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lasa I, Penades JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157(2):99–107. https://doi.org/10.1016/j.resmic.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  183. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penades JR et al (2012) Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8(8):e1002843. https://doi.org/10.1371/journal.ppat.1002843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schroeder K, Jularic M, Horsburgh SM, Hirschhausen N, Neumann C, Bertling A et al (2009) Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS One 4(10):e7567. https://doi.org/10.1371/journal.pone.0007567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH et al (2009) The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 4(2):e4344. https://doi.org/10.1371/journal.pone.0004344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Roche FM, Massey R, Peacock SJ, Day NP, Visai L, Speziale P et al (2003) Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149(Pt 3):643–654. https://doi.org/10.1099/mic.0.25996-0

    Article  CAS  PubMed  Google Scholar 

  187. Moreillon P, Entenza JM, Francioli P, McDevitt D, Foster TJ, Francois P et al (1995) Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 63(12):4738–4743. https://doi.org/10.1128/iai.63.12.4738-4743.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Entenza JM, Foster TJ, Ni Eidhin D, Vaudaux P, Francioli P, Moreillon P (2000) Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun 68(9):5443–5446. https://doi.org/10.1128/IAI.68.9.5443-5446.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Siboo IR, Chambers HF, Sullam PM (2005) Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73(4):2273–2280. https://doi.org/10.1128/IAI.73.4.2273-2280.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brouillette E, Grondin G, Shkreta L, Lacasse P, Talbot BG (2003) In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog 35(4):159–168. https://doi.org/10.1016/S0882-4010(03)00112-8

    Article  CAS  PubMed  Google Scholar 

  191. Gomez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A et al (2004) Staphylococcus aureus protein a induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10(8):842–848. https://doi.org/10.1038/nm1079

    Article  CAS  PubMed  Google Scholar 

  192. Vergara-Irigaray M, Valle J, Merino N, Latasa C, Garcia B, de Los R, Mozos I et al (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77(9):3978–3991. https://doi.org/10.1128/iai.00616-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Arrecubieta C, Asai T, Bayern M, Loughman A, Fitzgerald JR, Shelton CE et al (2006) The role of Staphylococcus aureus adhesins in the pathogenesis of ventricular assist device-related infections. J Infect Dis 193(8):1109–1119. https://doi.org/10.1086/501366

    Article  CAS  PubMed  Google Scholar 

  194. Patel AH, Nowlan P, Weavers ED, Foster T (1987) Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55(12):3103–3110. https://doi.org/10.1128/iai.55.12.3103-3110.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Palmqvist N, Foster T, Tarkowski A, Josefsson E (2002) Protein a is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb Pathog 33(5):239–249. https://doi.org/10.1006/mpat.2002.0533

    Article  CAS  PubMed  Google Scholar 

  196. Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M (2015) Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis 211(4):641–650. https://doi.org/10.1093/infdis/jiu514

    Article  CAS  PubMed  Google Scholar 

  197. Kwiecinski J, Jin T, Josefsson E (2014) Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS 122(12):1240–1250. https://doi.org/10.1111/apm.12295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, T.J. (2024). Cell Wall-Anchored Surface Proteins of Staphylococcus aureus. In: Nakane, A., Asano, K. (eds) Staphylococcus aureus. Springer, Singapore. https://doi.org/10.1007/978-981-99-9428-1_2

Download citation

Publish with us

Policies and ethics