Skip to main content

Klebsiella pneumoniae Virulence Factors and Biofilm Components: Synthesis, Structure, Function, and Inhibitors

  • Chapter
  • First Online:
ESKAPE Pathogens

Abstract

Klebsiella pneumoniae is a Gram-negative pathogen capable of causing a diverse array of infections in humans. It belongs to the group of ESKAPE pathogens, which are responsible for causing severe infections in immunocompromised individuals. The virulence of K. pneumoniae is attributed to several factors, including the synthesis of capsular polysaccharides, lipopolysaccharides, fimbriae, and iron acquisition systems. Additionally, K. pneumoniae can form a biofilm, which protects it from both host immune defense and antimicrobial agents. Its ability to form biofilm thus adds to its virulence potential significantly as biofilm-associated infections are notoriously difficult to treat. Thus, the chapter has been designed to provide an overview on the synthesis, structure, and function of virulence factors and biofilm components of K. pneumoniae, which contribute to its pathogenicity and also its multidrug resistance (MDR). Furthermore, the chapter discusses the various inhibitors developed to target these virulence factors and biofilm components, which can potentially be used as therapeutic agents to combat infections caused by K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonizio AL (2008) Anti-quorum sensing agents from South Florida medicinal plants and their attenuation of Pseudomonas aeruginosa pathogenicity. Doctoral dissertation, Florida International University

    Google Scholar 

  • Álvarez D, Merino S, TomÁs JM, Benedí VJ, Albertí S (2000) Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun 68(2):953–955

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen IC, McElvania-TeKippe E, Wilson JE, Lich JD, Arthur JC, Sullivan JT et al (2013) Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and Mycobacterium tuberculosis. PloS one 8(4):e60842. https://doi.org/10.1371/journal.pone.0060842

  • Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM, Weiser JN (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79(8):3309–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraud N, Kelso MJ, Rice SA, Kjelleberg S (2015) Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des 21(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Bassetti MATTEO, Giacobbe DR, Giamarellou H, Viscoli C, Daikos GL, Dimopoulos G, Poulakou G (2018) Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect 24(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Bengoechea JA, Sa Pessoa J (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 43(2):123–144

    Article  CAS  PubMed  Google Scholar 

  • Bossuet-Greif N, Dubois D, Petit C, Tronnet S, Martin P, Bonnet R et al (2016) Escherichia coli ClbS is a colibactin resistance protein. Mol Microbiol 99(5):897–908. https://doi.org/10.1111/mmi.13272

  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72(12):7107–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, Bengoechea JA (2015) Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 17(11):1537–1560

    Google Scholar 

  • Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T (2020) Network-based metabolism-centered screening of potential drug targets in Klebsiella pneumoniae at genome scale. Front Cell Infect Microbiol 9:447

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang D, Sharma L, Dela Cruz CS, Zhang D (2021) Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol 12:750662

    Article  PubMed  PubMed Central  Google Scholar 

  • Choby JE, Howard-Anderson J, Weiss DS (2020) Hypervirulent Klebsiella pneumoniae—clinical and molecular perspectives. J Intern Med 287(3):283–300

    Article  CAS  PubMed  Google Scholar 

  • Clarke BR, Ovchinnikova OG, Kelly SD, Williamson ML, Butler JE, Liu B et al (2018) Molecular basis for the structural diversity in serogroup O2-antigen polysaccharides in Klebsiella pneumoniae. J Biol Chem 293(13):4666–4679. https://doi.org/10.1074/jbc.RA117.000646

  • Cortés G, Borrell N, de Astorza B, Gómez C, Sauleda J, Albertí S (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70(5):2583–2590

    Article  PubMed  PubMed Central  Google Scholar 

  • Cryz SJ Jr, Fürer E, Germanier R (1985) Safety and immunogenicity of Klebsiella pneumoniae K1 capsular polysaccharide vaccine in humans. J Infect Dis 151(4):665–671

    Article  PubMed  Google Scholar 

  • De Araujo C, Balestrino D, Roth L, Charbonnel N, Forestier C (2010) Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res Microbiol 161(7):595–603

    Article  PubMed  Google Scholar 

  • de Astorza B, Cortés G, Crespí C, Saus C, Rojo JM, Albertí S (2004) C3 promotes clearance of Klebsiella pneumoniae by A549 epithelial cells. Infect Immun 72(3):1767–1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Triplicane Dwarakanathan H, Murugan D, Umashankar Y, Monk PN, Veeraraghavan B (2020) The influence of biofilms on carbapenem susceptibility and patient outcome in device associated K. pneumoniae infections: insights into phenotype vs genome-wide analysis and correlation. Front Microbiol 11:591679

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong N, Yang X, Chan EWC, Zhang R, Chen S (2022) Klebsiella species: taxonomy, hypervirulence and multidrug resistance. EBioMedicine 79:103998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW (2016) Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 221(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Goncalves M, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A et al (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One 9(6):e99995. https://doi.org/10.1371/journal.pone.0099995

  • Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BA, Iftekhar A, Katainen R, Meyer TF (2020) Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 26(7):1063–1069

    Article  PubMed  Google Scholar 

  • Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, Forestier C, Tridon A (2010) Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun 78(1):210–219

    Article  CAS  PubMed  Google Scholar 

  • Ferry T, Boucher F, Fevre C, Perpoint T, Chateau J, Petitjean C, Laurent F (2018) Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J Antimicrob Chemother 73(10):2901–2903

    Article  CAS  PubMed  Google Scholar 

  • Foerster J, Bachman M (2015) Beyond passive immunization: toward a nanoparticle-based IL-17 vaccine as first in class of future immune treatments. Nanomedicine 10(8):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, Thomson NR (2016) The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2(8). https://doi.org/10.1099/mgen.0.000073

  • Frank CG, Reguerio V, Rother M, Moranta D, Maeurer AP, Garmendia J, Bengoechea JA (2013) Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell Microbiol 15(7):1212–1233

    Article  CAS  PubMed  Google Scholar 

  • Gerlach GF, Clegg STEVEN, Allen B (1989) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171(3):1262–1270. https://doi.org/10.1128/jb.171.3.1262-1270.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A et al (2021) Impact of the peptide WMR-K on dual-Species biofilm Candida albicans/Klebsiella pneumoniae and on the untargeted metabolomic profile. Pathogens 10(2):214. https://doi.org/10.3390/pathogens10020214

  • Gomes AÉI, Pacheco T, Santos CDSD, Pereira JA, Ribeiro ML, Darrieux M, Ferraz LFC (2021) Functional insights from KpfR, a new transcriptional regulator of fimbrial expression that is crucial for Klebsiella pneumoniae pathogenicity. Front Microbiol 11:601921

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ (1995) Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol (Baltimore, Md.: 1950) 155(2):722–729

    Article  CAS  Google Scholar 

  • Guan S, Clarke AJ, Whitfield C (2001) Functional analysis of the galactosyltransferases required for biosynthesis of D-galactan I, a component of the lipopolysaccharide O1 antigen of Klebsiella pneumoniae. J Bacteriol 183(11):3318–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Converso TR (2022) Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front Cell Infect Microbiol 12:877995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held TK, Trautmann M, Mielke ME, Neudeck H, Cryz SJ Jr, Cross AS (1992) Monoclonal antibody against Klebsiella capsular polysaccharide reduces severity and hematogenic spread of experimental Klebsiella pneumoniae pneumonia. Infect Immun 60(5):1771–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109–2113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holden VI, Breen P, Houle S, Dozois CM, Bachman MA (2016) Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. MBio 7(5):10–1128

    Article  Google Scholar 

  • Huang X, Li X, An H, Wang J, Ding M, Wang L, Zhang JR (2022) Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 18(8):e1010693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadimurthy R, Mayegowda SB, Nayak SC, Mohan CD, Rangappa KS (2022) Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Rep 34:e00728

    Article  CAS  Google Scholar 

  • Kabha KISRA, Schmegner JUTTA, Keisari YONA, Parolis HARALAMBOS, Schlepper-Schaeffer J, Ofek ITZHAK (1997) SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Phys Lung Cell Mol Phys 272(2):L344–L352

    CAS  Google Scholar 

  • Karampatakis T, Tsergouli K, Behzadi P (2023) Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics 12(2):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, Bengoechea JA (2017) A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med 9(4):430–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostina E, Ofek I, Crouch E, Friedman R, Sirota L, Klinger G, Keisari Y (2005) Noncapsulated Klebsiella pneumoniae bearing mannose-containing O antigens is rapidly eradicated from mouse lung and triggers cytokine production by macrophages following opsonization with surfactant protein D. Infect Immun 73(12):8282–8290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kot B, Piechota M, Szweda P, Mitrus J, Wicha J, Grużewska A, Witeska M (2023) Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci Rep 13(1):4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamey AE, Selim AO, Atia NM, Mowafy RE (2023) Genes contributed on biofilm forming bacteria incriminated in various disease conditions in cattle. J Adv Vet Res 13(3):312–321

    Google Scholar 

  • Lawlor MS, Hsu J, Rick PD, Miller VL (2005) Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 58(4):1054–1073

    Article  CAS  PubMed  Google Scholar 

  • Lawlor MS, O’connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 75(3):1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Yoon SS (2017) Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol 27(6):1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9(9):1071–1081

    Article  PubMed  Google Scholar 

  • Llobet E, Campos MA, Giménez P, Moranta D, Bengoechea JA (2011) Analysis of the networks controlling the antimicrobial-peptide-dependent induction of Klebsiella pneumoniae virulence factors. Infect Immun 79(9):3718–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahrous SH, El-Balkemy FA, Abo-Zeid NZ, El-Mekkawy MF, El Damaty HM, Elsohaby I (2023) Antibacterial and anti-biofilm activities of Cinnamon Oil against multidrug-resistant Klebsiella pneumoniae isolated from Pneumonic Sheep and Goats. Pathogens 12(9):1138. https://doi.org/10.3390/pathogens12091138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannes GP, Boersma WG, Baur CH, Postmus PE (1991) Adult respiratory distress syndrome (ARDS) due to bacteraemic pneumococcal pneumonia. Eur Respir J 4(4):503–504

    Article  CAS  PubMed  Google Scholar 

  • March C, Moranta D, Regueiro V, Llobet E, Tomás A, Garmendia J, Bengoechea JA (2011) Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J Biol Chem 286(12):9956–9967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino S, Camprubí S, Albertí S, Benedí VJ, Tomas J (1992) Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 60(6):2529–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199

    Article  CAS  PubMed  Google Scholar 

  • Mills G, Dumigan A, Kidd T, Hobley L, Bengoechea JA (2017) Identification and characterization of two Klebsiella pneumoniae lpxL lipid A late acyltransferases and their role in virulence. Infect Immun 85(9):10–1128

    Article  Google Scholar 

  • Mirzaei B, Ebrahimi A, Keshavarzi S, Hydarzadeh S, Badmasti F, Dadar M, Moradi N (2023) Antibiotic susceptibility, biofilm-forming ability, and prevalence of extended-spectrum beta-lactamase (ESBL)-and biofilm-associated genes among Klebsiella pneumoniae isolates from hospitalized patients in northwest of Iran. Curr Microbiol 80(5):175

    Article  CAS  PubMed  Google Scholar 

  • Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313(5788):848–851

    Article  PubMed  Google Scholar 

  • Ofek I, Mesika A, Kalina M, Keisari Y, Podschun R, Sahly H, Crouch E (2001) Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae. Infect Immun 69(1):24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opoku-Temeng C, Kobayashi SD, DeLeo FR (2019) Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J 17:1360–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco T, Gomes AÉI, Siqueira NMG, Assoni L, Darrieux M, Venter H, Ferraz LFC (2021) SdiA, a quorum-sensing regulator, suppresses fimbriae expression, biofilm formation, and quorum-sensing signaling molecules production in. Front Microbiol 12:597735

    Article  PubMed  PubMed Central  Google Scholar 

  • Packiavathy IASV, Kannappan A, Thiyagarajan S, Srinivasan R, Jeyapragash D, Paul JBJ, Ravi AV (2021) AHL-Lactonase producing Psychrobacter sp. from Palk Bay sediment mitigates quorum sensing-mediated virulence production in Gram negative bacterial pathogens. Front Microbiol 12:634593

    Article  PubMed  PubMed Central  Google Scholar 

  • Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80(3):629–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54(1):177–183

    Article  CAS  PubMed  Google Scholar 

  • Pan YJ, Lin TL, Hsu CR, Wang JT (2011) Use of a Dictyostelium model for isolation of genetic loci associated with phagocytosis and virulence in Klebsiella pneumoniae. Infect Immun 79(3):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Patro LPP, Rathinavelan T (2019) Targeting the sugary armor of Klebsiella species. Front Cell Infect Microbiol 9:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pranavathiyani G, Prava J, Rajeev AC, Pan A (2020) Novel target exploration from hypothetical proteins of Klebsiella pneumoniae MGH 78578 reveals a protein involved in host-pathogen interaction. Front Cell Infect Microbiol 10:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahn A, Drummelsmith J, Whitfield C (1999) Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181(7):2307–2313. https://doi.org/10.1128/JB.181.7.2307-2313.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammaert B, Goyet S, Beauté J, Hem S, Te V, Try PL, Vong S (2012) Klebsiella pneumoniae related community-acquired acute lower respiratory infections in Cambodia: clinical characteristics and treatment. BMC Infect Dis 12(1):1–7

    Article  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regueiro V, Campos MA, Pons J, Albertí S, Bengoechea JA (2006) The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology 152(2):555–566

    Article  CAS  PubMed  Google Scholar 

  • Regueiro V, Moranta D, Frank CG, Larrarte E, Margareto J, March C, Bengoechea JA (2011) Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner. Cell Microbiol 13(1):135–153

    Article  CAS  PubMed  Google Scholar 

  • Rendueles O, Beloin C, Latour-Lambert P, Ghigo JM (2014) A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME J 8(6):1275–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rifaat RM, Ghaima KK (2023) Detection of type1 fimbriae genes (fimH and fimA) of Klebsiella pneumoniae among Iraqi Patients with catheter-associated urinary tract infections. Acta Biomed 94(2):e2023064

    Google Scholar 

  • Riwu KHP, Effendi MH, Rantam FA, Khairullah AR, Widodo A (2022) A review: virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet World 15(9):2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo TA, Marr CM (2019) Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 32(3):10–1128

    Article  Google Scholar 

  • Russo TA, Shon AS, Beanan JM, Olson R, MacDonald U, Pomakov AO, Visitacion MP (2011) Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “classical” K. pneumoniae thereby enhancing its virulence. PLoS One 6(10):e26734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachdeva S, Palur RV, Sudhakar KU, Rathinavelan T (2017) E. coli group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Front Microbiol 8:70. https://doi.org/10.3389/fmicb.2017.00070

    Article  PubMed  PubMed Central  Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos PBDRED, Avila DDS, Ramos LDP, Yu AR, Santos CEDR, Berretta AA, Oliveira LDD (2020) Effects of Brazilian green propolis extract on planktonic cells and biofilms of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. Biofouling 36(7):834–845

    Article  CAS  PubMed  Google Scholar 

  • Shadkam S, Goli HR, Mirzaei B, Gholami M, Ahanjan M (2021) Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann Clin Microbiol Antimicrob 20:1–7

    Article  Google Scholar 

  • Shen L, Zhang J, Xue J, Du L, Yuan L, Nie H, Li Y (2022) Regulation of ECP fimbriae-related genes by the transcriptional regulator RcsAB in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 62(5):593–603

    Article  CAS  PubMed  Google Scholar 

  • Shon AS, Bajwa RP, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4(2):107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Standiford TJ, Wilkowski JM, Sisson TH, Hattori N, Mehrad B, Bucknell KA, Moore TA (1999) Intrapulmonary tumor necrosis factor gene therapy increases bacterial clearance and survival in murine gram-negative pneumonia. Hum Gene Ther 10(6):899–909

    Article  CAS  PubMed  Google Scholar 

  • Strakova N, Korena K, Karpiskova R (2021) Klebsiella pneumoniae producing bacterial toxin colibactin as a risk of colorectal cancer development—a systematic review. Toxicon 197:126–135

    Article  CAS  PubMed  Google Scholar 

  • Swati S (2016) A study on microbiological profile of symptomatic catheter associated urinary tract infection in an intensive care unit setup in a Tertiary care hospital. Doctoral dissertation, Madras Medical College, Chennai

    Google Scholar 

  • Tacconelli E (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development. WHO pp 1–7. https://policycommons.net/artifacts/1818147/global-priority-list-of-antibiotic-resistant-bacteria-to-guide-researchdiscovery-and-development/2555608/

  • Tängdén T, Hickman RA, Forsberg P, Lagerbäck P, Giske CG, Cars O (2014) Evaluation of double-and triple-antibiotic combinations for VIM-and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother 58(3):1757–1762

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesfa T, Mitiku H, Edae M, Assefa N (2022) Prevalence and incidence of carbapenem-resistant K. pneumoniae colonization: systematic review and meta-analysis. Syst Rev 11(1):1–15

    Article  Google Scholar 

  • Thorpe HA, Booton R, Kallonen T, Gibbon MJ, Couto N, Passet V, Feil EJ (2022) A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat Microbiol 7(12):2054–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Bengoechea JA (2015) Functional genomic screen identifies Klebsiella pneumoniae factors implicated in blocking nuclear factor κB (NF-κB) signaling. J Biol Chem 290(27):16678–16697

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai CC, Lin JC, Chen PC, Liu EYM, Tsai YK, Yu CP, Siu LK (2023) A 20-year study of capsular polysaccharide seroepidemiology, susceptibility profiles, and virulence determinants of Klebsiella pneumoniae from bacteremia patients in Taiwan. Microbiol Spectr 11(3):e00359–e00323

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkitapathi S, Wijesundara YH, Cornelius SA, Herbert FC, Gassensmith JJ, Zimmern PE, De Nisco NJ (2022) Conserved FimK truncation coincides with increased expression of type 3 fimbriae and cultured bladder epithelial cell association in Klebsiella quasipneumoniae. J Bacteriol 204(9):e00172–e00122

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF et al (2017) Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 123(4):1003–1018. https://doi.org/10.1111/jam.13533

    Article  CAS  PubMed  Google Scholar 

  • Wand ME, McCowen JW, Nugent PG, Sutton JM (2013) Complex interactions of Klebsiella pneumoniae with the host immune system in a Galleria mellonella infection model. J Med Microbiol 62(12):1790–1798

    Article  PubMed  Google Scholar 

  • Wang G, Zhao G, Chao X, Xie L, Wang H (2020) The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health 17(17):6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DD, Xiong XS, Mei YF, Du FL, Wan LG, Liu Y (2021) Microbiological and clinical characteristics of Klebsiella pneumoniae isolates of K57 capsular serotype in China. Microb Drug Resist 27(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C, Paiment A (2003) Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 338(23):2491–2502

    Article  CAS  PubMed  Google Scholar 

  • Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MTH, Taxman DJ, Ting JPY (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and-independent pathways. J Immunol 183(3):2008–2015

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Lin CT, Cheng WY, Huang CJ, Wang ZC, Peng HL (2012) Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. Microbiology 158(4):1045–1056. https://doi.org/10.1099/mic.0.053801-0

    Article  CAS  PubMed  Google Scholar 

  • Wu C-C, Wang C-K, Chen Y-C, Lin T-H, Jinn T-R, Lin C-T (2014) IscR regulation of capsular polysaccharide biosynthesis and iron-acquisition systems in klebsiella pneumoniae CG43. PLoS ONE 9(9):e107812. https://doi.org/10.1371/journal.pone.0107812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Yeoh BS, Vijay-Kumar M (2017) Lipocalin 2: an emerging player in iron homeostasis and inflammation. Annu Rev Nutr 37:103–130

    Article  CAS  PubMed  Google Scholar 

  • Yang MT (1974) Structural studies of Klebsiella capsular polysaccharides. Doctoral dissertation, University of British Columbia

    Google Scholar 

  • Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Iwakura Y, Yamaguchi K (2001) Protection against pulmonary infection with Klebsiella pneumoniae in mice by interferon-γ through activation of phagocytic cells and stimulation of production of other cytokines. J Med Microbiol 50(11):959–964

    Article  CAS  PubMed  Google Scholar 

  • Yu HH, Zhang L, Yu F, Li F, Liu ZY, Chen JH (2017) Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin. Materials 10(2):183

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, B.J., Mathew, M., Rachel, R., Mathew, J., Radhakrishnan, E.K. (2024). Klebsiella pneumoniae Virulence Factors and Biofilm Components: Synthesis, Structure, Function, and Inhibitors. In: Busi, S., Prasad, R. (eds) ESKAPE Pathogens. Springer, Singapore. https://doi.org/10.1007/978-981-99-8799-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8799-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8798-6

  • Online ISBN: 978-981-99-8799-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics