Skip to main content

Intra-variance Guided Metric Learning forĀ Face Forgery Detection

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14463))

Included in the following conference series:

Abstract

Since facial manipulation technology has raised serious concerns, facial forgery detection has also attracted increasing attention. Although recent work has made good achievements, the detection of unseen fake faces is still a big challenge. In this paper, we tackle facial forgery detection problem from the perspective of distance metric learning, and design a new Intra-Variance guided Metric Learning (IVML) method to drive classification and adopt Vision Transformer (ViT) as the backbone, which aims to improve the generalization ability of face forgery detection methods. Specifically, considering that there is a large gap between different real faces, our proposed IVML method increases the distance between real and fake faces while maintaining a certain distance within real faces. We choose ViT as the backbone as our experiments prove that ViT has better generalization ability in face forgery detection. A large number of experiments demonstrate the effectiveness and superiority of our IVML method in cross-dataset evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/deepfakes/faceswap.

  2. 2.

    https://github.com/MarekKowalski/FaceSwap.

References

  1. Goodfellow, I.J., et al.: Generative adversarial networks. Commun. ACM 63, 139ā€“144 (2020)

    ArticleĀ  Google ScholarĀ 

  2. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)

    Google ScholarĀ 

  3. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: IEEE International Workshop on Information Forensics and Security, pp. 1ā€“7 (2018)

    Google ScholarĀ 

  4. Rƶssler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., NieƟner, M.: Faceforensics++: learning to detect manipulated facial images. In: International Conference on Computer Vision, pp. 1ā€“11 (2019)

    Google ScholarĀ 

  5. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5780ā€“5789 (2020)

    Google ScholarĀ 

  6. Li, L., et al.: Face x-ray for more general face forgery detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5000ā€“5009 (2020)

    Google ScholarĀ 

  7. Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14923ā€“14932 (2021)

    Google ScholarĀ 

  8. Gu, Q., Chen, S., Yao, T., Chen, Y., Ding, S., Yi, R.: Exploiting fine-grained face forgery clues via progressive enhancement learning. In: AAAI Conference on Artificial Intelligence, pp. 735ā€“743 (2022)

    Google ScholarĀ 

  9. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1831ā€“1839 (2017)

    Google ScholarĀ 

  10. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. In: AAAI Conference on Artificial Intelligence, pp. 1081ā€“1088 (2021)

    Google ScholarĀ 

  11. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2185ā€“2194 (2021)

    Google ScholarĀ 

  12. Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6458ā€“6467 (2021)

    Google ScholarĀ 

  13. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: Using capsule networks to detect forged images and videos. In: International Conference on Acoustics, Speech and Signal Processing, pp. 2307ā€“2311 (2019)

    Google ScholarĀ 

  14. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1800ā€“1807 (2017)

    Google ScholarĀ 

  15. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-classification learning for face forgery detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4103ā€“4112 (2022)

    Google ScholarĀ 

  16. Huang, B., et al.: Implicit identity driven deepfake face swapping detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490ā€“4499 (2023)

    Google ScholarĀ 

  17. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision, pp. 499ā€“515 (2016)

    Google ScholarĀ 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815ā€“823 (2015)

    Google ScholarĀ 

  19. Kumar, A., Bhavsar, A., Verma, R.: Detecting deepfakes with metric learning. In: International Workshop on Biometrics and Forensics, pp. 1ā€“6 (2020)

    Google ScholarĀ 

  20. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google ScholarĀ 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998ā€“6008 (2017)

    Google ScholarĀ 

  22. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your vit? data, augmentation, and regularization in vision transformers. Trans. Mach. Learn. Res. 2022 (2022)

    Google ScholarĀ 

  23. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248ā€“255 (2009)

    Google ScholarĀ 

  24. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3204ā€“3213 (2020)

    Google ScholarĀ 

  25. Thies, J., Zollhƶfer, M., Stamminger, M., Theobalt, C., NieƟner, M.: Face2face: real-time face capture and reenactment of RGB videos. Commun. ACM 62(1), 96ā€“104 (2019)

    ArticleĀ  Google ScholarĀ 

  26. Thies, J., Zollhƶfer, M., NieƟner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38(4) 66:1ā€“66:12 (2019)

    Google ScholarĀ 

  27. Paszke, A., et al.: Automatic differentiation in pytorch. In: Advances in Neural Information Processing Systems Workshop (2017)

    Google ScholarĀ 

  28. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105ā€“6114 (2019)

    Google ScholarĀ 

  29. Li, D., Yang, Y., Song, Y., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: AAAI Conference on Artificial Intelligence, pp. 3490ā€“3497 (2018)

    Google ScholarĀ 

  30. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 16317ā€“16326 (2021)

    Google ScholarĀ 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62006013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Hu, J. (2023). Intra-variance Guided Metric Learning forĀ Face Forgery Detection. In: Jia, W., et al. Biometric Recognition. CCBR 2023. Lecture Notes in Computer Science, vol 14463. Springer, Singapore. https://doi.org/10.1007/978-981-99-8565-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8565-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8564-7

  • Online ISBN: 978-981-99-8565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics