Skip to main content

DARN: Crowd Counting Network Guided by Double Attention Refinement

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Although great progress has been made in crowd counting, accurate estimation of crowd numbers in high-density areas and full mitigation of the interference of background noise remain challenging. To address these issues, we propose a method called Double Attention Refinement Guided Counting Network (DARN). DARN introduces an attention-guided feature aggregation module that dynamically fuses features extracted from the Transformer backbone. By adaptively fusing features at different scales, this module can estimate the crowd for high-density areas by restoring the lost fine-grained information. Additionally, we propose a segmentation attention-guided refinement method with multiple stages. In this refinement process, crowd background noise is filtered by introducing segmentation attention maps as masks, resulting in a significant refinement of the foreground features. The introduction of multiple stages can further refine the features by utilizing fine-grained and global information. Extensive experiments were conducted on four challenging crowd counting datasets: ShanghaiTech A, UCF-QNRF, JHU-CROWD++, and NWPU-Crowd. The experimental results validate the effectiveness of the proposed method.

Supported by the National Natural Science Foundation of China (61972059, 62376041, 42071438, 62102347), China Postdoctoral Science Foundation(2021M69236), Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (93K172021K01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: Tenth IEEE International Conference on Computer Vision, pp. 90–97. IEEE (2005)

    Google Scholar 

  2. Idrees, H., Saleemi, I., Seibert, C., et al.: Multi-source multi-scale counting in extremely dense crowd images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2547–2554. IEEE (2013)

    Google Scholar 

  3. Pham, V.Q., Kozakaya, T., Yamaguchi, O., et al.: Count forest: co-voting uncertain number of targets using random forest for crowd density estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3253–3261. IEEE (2015)

    Google Scholar 

  4. Li, Y., Zhang, X., Chen, D.: CSRnet: dilated convolutional neural networks for understanding the highly congested scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1091–1100. IEEE (2018)

    Google Scholar 

  5. Xu, Y., Liang, M., Gong, Z.: A crowd counting method based on multi-scale attention network. In: 2023 3rd International Conference on Neural Networks, Information and Communication Engineering, pp. 591–595. IEEE (2023)

    Google Scholar 

  6. Sindagi, V.A., Patel, V.M.: CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  7. Liang, D., Chen, X., Xu, W., et al.: Transcrowd: weakly-supervised crowd counting with transformers. SCIENCE CHINA Inf. Sci. 65(6), 160104 (2022)

    Article  Google Scholar 

  8. Chu, X., Tian, Z., Wang, Y., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Advances in Neural Information Processing SystemSL, vol. 34, pp. 9355–9366 (2021)

    Google Scholar 

  9. Lin, H., Ma, Z., Hong, X., et al.: Semi-supervised crowd counting via density agency. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 1416–1426. ACM (2022)

    Google Scholar 

  10. Lin, H., Ma, Z., Ji, R., et al.: Boosting crowd counting via multifaceted attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19628–19637. IEEE (2022)

    Google Scholar 

  11. Dai, M., Huang, Z., Gao, J., et al.: Cross-head supervision for crowd counting with noisy annotations. In: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  12. Wang, Q., Breckon, T.P.: Crowd counting via segmentation guided attention networks and curriculum loss. IEEE Trans. Intell. Transp. Syst. 23(9), 15233–15243 (2022)

    Article  Google Scholar 

  13. Zhang, Y., Zhou, D., Chen, S., et al.: Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 589–597. IEEE (2016)

    Google Scholar 

  14. Idrees, H., et al.: Composition loss for counting, density map estimation and localization in dense crowds. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 544–559. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_33

    Chapter  Google Scholar 

  15. Sindagi, V.A., Yasarla, R., Patel, V.M.: Jhu-crowd++: large-scale crowd counting dataset and a benchmark method. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2594–2609 (2020)

    Google Scholar 

  16. Wang, Q., Gao, J., Lin, W., et al.: NWPU-crowd: a large-scale benchmark for crowd counting and localization. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2141–2149 (2020)

    Article  Google Scholar 

  17. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization. In: 7th International Conference on Learning Representations. ICLR (2019)

    Google Scholar 

  18. Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: Conference on Computer Vision and Pattern Recognition, pp. 5099–5108. IEEE (2019)

    Google Scholar 

  19. Wan, J., Chan, A.: Modeling noisy annotations for crowd counting. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3386–3396 (2020)

    Google Scholar 

  20. Xu, C., Liang, D., Xu, Y., et al.: Autoscale: learning to scale for crowd counting. Int. J. Comput. Vision 130(2), 405–434 (2022)

    Article  Google Scholar 

  21. Cheng, Z.Q., Dai, Q., Li, H., et al.: Rethinking spatial invariance of convolutional networks for object counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19638–19648. IEEE (2022)

    Google Scholar 

  22. Gu, C., Wang, C., Gao, B.B., et al.: HDNet: a hierarchically decoupled network for crowd counting. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Zhong or Shengrong Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, S., Zhong, S., Zhou, L., Zhou, X., Gong, S. (2024). DARN: Crowd Counting Network Guided by Double Attention Refinement. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics