Skip to main content

Text Causal Discovery Based on Sequence Structure Information

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14431))

Included in the following conference series:

  • 362 Accesses

Abstract

Causality forms the basis for reasoning and decision-making in artificial intelligence systems. To take advantage of the vast amount of textual data available today, causal discovery from text has become a significant challenge in recent years. Text data contains rich contextual semantic information. However, traditional causal discovery methods only handle structured data and do not consider serial relationships and semantic relevance between words on textual variables. To address this problem, in this paper, we propose a causal discovery method Text Causal Discovery Based on Sequence Structure Information (TCDSS) discovers strongly correlated text word pairs with semantic relevance and statistical causality and finally constructs lexical causal graphs by introducing sequence-structure information in the causal discovery algorithm. We tested our method TCDSS on the DXY-COVID-19-Data and the Chinese Emergency Corpus (CEC) and compared it with other existing causal discovery methods. The experimental results show that PC, IGCI, RECI, and other forms have improved in precision, recall, and structural Hamming distance (SHD) after the introduction of TCDSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.: Cause-effect inference by comparing regression errors. In: International Conference on Artificial Intelligence and Statistics, pp. 900–909. PMLR (2018)

    Google Scholar 

  2. Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., Drouin, A.: Differentiable causal discovery from interventional data. Adv. Neural. Inf. Process. Syst. 33, 21865–21877 (2020)

    Google Scholar 

  3. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)

    Google Scholar 

  4. Daniusis, P., et al.: Inferring deterministic causal relations. arXiv preprint arXiv:1203.3475 (2012)

  5. Fonollosa, J.A.: Conditional distribution variability measures for causality detection. Cause Effect Pairs in Machine Learning, pp. 339–347 (2019)

    Google Scholar 

  6. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  7. Guo, R., Cheng, L., Li, J., Hahn, P.R., Liu, H.: A survey of learning causality with data: problems and methods. ACM Comput. Surv. (CSUR) 53(4), 1–37 (2020)

    Google Scholar 

  8. Hauser, A., Bühlmann, P.: Characterization and greedy learning of interventional markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13(1), 2409–2464 (2012)

    MathSciNet  Google Scholar 

  9. Heinze-Deml, C., Peters, J., Meinshausen, N.: Invariant causal prediction for nonlinear models. J. Causal Inference 6(2) (2018)

    Google Scholar 

  10. Hoyer, P., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Advances in Neural Information Processing Systems 21 (2008)

    Google Scholar 

  11. Janzing, D., et al.: Information-geometric approach to inferring causal directions. Artif. Intell. 182, 1–31 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ke, N.R., et al.: Learning neural causal models from unknown interventions. arXiv preprint arXiv:1910.01075 (2019)

  13. Lam, W.Y., Andrews, B., Ramsey, J.: Greedy relaxations of the sparsest permutation algorithm. In: Uncertainty in Artificial Intelligence, pp. 1052–1062. PMLR (2022)

    Google Scholar 

  14. Lippe, P., Cohen, T., Gavves, E.: Efficient neural causal discovery without acyclicity constraints. arXiv preprint arXiv:2107.10483 (2021)

  15. Liu, R., Hu, J., Wei, W., Yang, Z., Nyberg, E.: Structural embedding of syntactic trees for machine comprehension. arXiv preprint arXiv:1703.00572 (2017)

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  17. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  18. Peters, J., Bühlmann, P., Meinshausen, N.: Causal inference by using invariant prediction: identification and confidence intervals. J. Royal Stat. Soc. Ser. B (Stat. Methodol.), 947–1012 (2016)

    Google Scholar 

  19. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations and learning algorithms. The MIT Press (2017)

    Google Scholar 

  20. Richardson, T.S.: A discovery algorithm for directed cyclic graphs. arXiv preprint arXiv:1302.3599 (2013)

  21. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A., Jordan, M.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(10) (2006)

    Google Scholar 

  22. Spirtes, P., Glymour, C., Scheines, R.: Causality from probability (1989)

    Google Scholar 

  23. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, prediction, and search. MIT press (2000)

    Google Scholar 

  24. Wang, Y., Solus, L., Yang, K., Uhler, C.: Permutation-based causal inference algorithms with interventions. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  25. Yang, K., Katcoff, A., Uhler, C.: Characterizing and learning equivalence classes of causal dags under interventions. In: International Conference on Machine Learning, pp. 5541–5550. PMLR (2018)

    Google Scholar 

  26. Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: Dags with no tears: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62076210, No. 81973752), the Natural Science Foundation of Xiamen city (No. 3502Z20227188) and the Open Project Program of The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyi University(No. KLCCIIP2020203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhen Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 108 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Cao, D., Lin, D. (2024). Text Causal Discovery Based on Sequence Structure Information. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics