Skip to main content

Enhancing Feature Representation for Anomaly Detection via Local-and-Global Temporal Relations and a Multi-stage Memory

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14430))

Included in the following conference series:

  • 345 Accesses

Abstract

Weakly supervised video anomaly detection is a challenging task because frame-level labels are not accessible at the training time. Effectively tackling this task necessitates models to learn discriminative feature representation. To address this challenge, we propose a multi-stage memory-augmented feature discrimination learning (MMFDL) method. The first stage obtains the preliminary abnormal probabilities of clip features. In the second stage, an easy normal pattern memory (ENPM) are proposed to store normal patterns with low abnormal probabilities. In the last stage, we bring clip features with high abnormal probabilities in normal videos close to ENPM and away from the clip features with high probabilities of being abnormal in abnormal videos to make models learn more discriminative features for anomaly detection. Furthermore, we propose a local-and-global temporal relations modeling (LGTRM) module to enhance clip features by aggregating local and global contexts. Our LGTRM module can be divided into two subnetworks: DW-Net and TF-Net. DW-Net integrates the current clip feature with its adjacent clip features to capture local-range temporal dependencies. TF-Net utilizes the multi-head self-attention mechanism of the transformer to capture global-range temporal dependencies. Experiments on two datasets demonstrate that our method outperforms state-of-the-art approaches. The code is available at https://github.com/xuanli01/PRCV347.

This work was supported in part by the National Key Research and Development Program of China under Grant 2020AAA0106502, in part by the Natural Science Foundation of China under Grant 62073105, in part by the Natural Science Foundation of Heilongjiang Province of China under Grant ZD2022F002, and in part by the Heilongjiang Touyan Innovation Team Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, vol. 26 (2013)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 4724–4733 (2017)

    Google Scholar 

  4. Chen, C., et al.: Comprehensive regularization in a bi-directional predictive network for video anomaly detection. In: AAAI, vol. 36, pp. 230–238 (2022)

    Google Scholar 

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1800–1807 (2017)

    Google Scholar 

  6. Feng, J., Hong, F., Zheng, W.: MIST: multiple instance self-training framework for video anomaly detection. In: CVPR, pp. 14009–14018 (2021)

    Google Scholar 

  7. Li, S., Liu, F., Jiao, L.: Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection. In: AAAI, pp. 1395–1403 (2022)

    Google Scholar 

  8. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: CVPR, pp. 6536–6545 (2018)

    Google Scholar 

  9. Liu, Y., Liu, J., Zhu, X., Wei, D., Huang, X., Song, L.: Learning task-specific representation for video anomaly detection with spatial-temporal attention. In: ICASSP, pp. 2190–2194 (2022)

    Google Scholar 

  10. Luo, W., et al.: Action unit memory network for weakly supervised temporal action localization. In: CVPR, pp. 9969–9979 (2021)

    Google Scholar 

  11. Lv, H., Zhou, C., Cui, Z., Xu, C., Li, Y., Yang, J.: Localizing anomalies from weakly-labeled videos. IEEE TIP 30, 4505–4515 (2021)

    Google Scholar 

  12. Pu, Y., Wu, X.: Locality-aware attention network with discriminative dynamics learning for weakly supervised anomaly detection. In: IEEE ICME, pp. 1–6 (2022)

    Google Scholar 

  13. Purwanto, D., Chen, Y., Fang, W.: Dance with self-attention: a new look of conditional random fields on anomaly detection in videos. In: ICCV, pp. 173–183 (2021)

    Google Scholar 

  14. Sapkota, H., Yu, Q.: Bayesian nonparametric submodular video partition for robust anomaly detection. In: CVPR, pp. 3212–3221 (2022)

    Google Scholar 

  15. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR, pp. 6479–6488 (2018)

    Google Scholar 

  16. Sun, C., Jia, Y., Hu, Y., Wu, Y.: Scene-aware context reasoning for unsupervised abnormal event detection in videos. In: ACMMM, pp. 184–192 (2020)

    Google Scholar 

  17. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: ICCV, pp. 4955–4966 (2021)

    Google Scholar 

  18. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  20. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: IEEE ICME, pp. 1–6 (2020)

    Google Scholar 

  21. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  22. Wu, P., Liu, J.: Learning causal temporal relation and feature discrimination for anomaly detection. IEEE TIP 30, 3513–3527 (2021)

    Google Scholar 

  23. Yu, J., Lee, Y., Yow, K.C., Jeon, M., Pedrycz, W.: Abnormal event detection and localization via adversarial event prediction. In: IEEE TNNLS, pp. 1–15 (2021)

    Google Scholar 

  24. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  25. Zhang, J., Qing, L., Miao, J.: Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection. In: ICIP, pp. 4030–4034 (2019)

    Google Scholar 

  26. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: CVPR, pp. 1237–1246 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Ma, D., Wu, X. (2024). Enhancing Feature Representation for Anomaly Detection via Local-and-Global Temporal Relations and a Multi-stage Memory. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14430. Springer, Singapore. https://doi.org/10.1007/978-981-99-8537-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8537-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8536-4

  • Online ISBN: 978-981-99-8537-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics