Skip to main content

Confidence-Guided Open-World Semi-supervised Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14428))

Included in the following conference series:

  • 373 Accesses

Abstract

Open-world semi-supervised learning differs from traditional semi-supervised learning by allowing labeled and unlabeled data from different data distributions, i.e., unlabeled data may contain novel classes. The goal is to identify samples of known classes while simultaneously detecting and clustering samples of novel classes found in the unlabeled data. To address this challenging task, we propose a novel open-world semi-supervised learning model, which integrates two new confidence-guided techniques to better leverage unlabeled data, especially those from novel classes. Specifically, we first approximate the confidence of model on unlabeled samples by inspecting the prediction consistency through the training process, which guides the temperature scaling for cross-entropy loss. Then, we introduce an adaptive class-specific reweighting contrastive learning method, which further synchronizes the learning speed of known and unknown classes, while reducing the influence of noisy labels. Extensive empirical results show our approach achieves significant performance improvement in both seen and unseen classes compared with previous studies, especially in challenging scenarios with limited labeled data.

This work is partially supported by National Natural Science Foundation of China (Grants no. 62176271), and Science and Technology Program of Guangzhou (Grant no. 202201011681).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  3. Cao, K., Brbić, M., Leskovec, J.: Open-world semi-supervised learning. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  5. Chen, H., et al.: Softmatch: addressing the quantity-quality trade-off in semi-supervised learning. arXiv preprint arXiv:2301.10921 (2023)

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  8. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  9. Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi, M., Ricci, E.: A unified objective for novel class discovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9284–9292 (2021)

    Google Scholar 

  10. Guo, L.Z., Zhang, Y.G., Wu, Z.F., Shao, J.J., Li, Y.F.: Robust semi-supervised learning when not all classes have labels. In: Advances in Neural Information Processing Systems, vol. 35, pp. 3305–3317 (2022)

    Google Scholar 

  11. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: International Conference on Machine Learning, pp. 3897–3906. PMLR (2020)

    Google Scholar 

  12. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Automatically discovering and learning new visual categories with ranking statistics. arXiv preprint arXiv:2002.05714 (2020)

  13. Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8401–8409 (2019)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 2, pp. 287–295 (2015)

    Google Scholar 

  15. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. arXiv preprint arXiv:1711.10125 (2017)

  16. Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: beyond empirical risk minimization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19365–19376 (2020)

    Google Scholar 

  17. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  18. Rizve, M.N., Kardan, N., Khan, S., Shahbaz Khan, F., Shah, M.: OpenLDN: learning to discover novel classes for open-world semi-supervised learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 382–401. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_22

    Chapter  Google Scholar 

  19. Rizve, M.N., Kardan, N., Shah, M.: Towards realistic semi-supervised learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXI. LNCS, vol. 13691, pp. 437–455. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_25

    Chapter  Google Scholar 

  20. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  21. Sun, Y., Li, Y.: OpenCon: open-world contrastive learning. Trans. Mach. Learn. Res. (2023). https://openreview.net/forum?id=2wWJxtpFer

  22. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Generalized category discovery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7492–7501 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Yang, M., Feng, M. (2024). Confidence-Guided Open-World Semi-supervised Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics