Skip to main content

A Two-Stage Federated Learning Framework for Class Imbalance in Aerial Scene Classification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Centralized aerial imagery analysis techniques face two challenges. The first one is the data silos problem, where data is located at different organizations separately. The second challenge is the class imbalance in the overall distribution of aerial scene data, due to the various collecting procedures across organizations. Federated learning (FL) is a method that allows multiple organizations to learn collaboratively from their local data without sharing. This preserves users’ privacy and tackles the data silos problem. However, traditional FL methods assume that the datasets are globally balanced, which is not realistic for aerial imagery applications. In this paper, we propose a Two-Stage FL framework (TS-FL), which mitigate the effect of the class imbalanced problem in aerial scene classification under FL. In particular, the framework introduces a feature representation method by combing supervised contrastive learning with knowledge distillation to enhance the model’s feature representation ability and minimize the client drift. Experiments on two public aerial datasets demonstrate that the proposed method outperforms other FL methods and possesses good generalization ability.

The work was supported in part by the National Natural Science Foundation of China under Grant 82172033, U19B2031, 61971369, 52105126, 82272071, 62271430, and the Fundamental Research Funds for the Central Universities 20720230104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkhelaiwi, M., Boulila, W., Ahmad, J., Koubaa, A., Driss, M.: An efficient approach based on privacy-preserving deep learning for satellite image classification. Remote Sens. 13(11), 2221 (2021)

    Article  Google Scholar 

  2. Chen, H.Y., Chao, W.L.: FedBE: making Bayesian model ensemble applicable to federated learning. arXiv preprint arXiv:2009.01974 (2020)

  3. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  4. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  5. Deng, Z., Liu, H., Wang, Y., Wang, C., Yu, Z., Sun, X.: PML: progressive margin loss for long-tailed age classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10503–10512 (2021)

    Google Scholar 

  6. He, C., et al.: FedML: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518 (2020)

  7. Ji, Z., Hou, L., Wang, X., Wang, G., Pang, Y.: Dual contrastive network for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)

    Article  Google Scholar 

  8. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  9. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  10. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  11. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  12. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  13. Li, Y., Lai, X., Wang, M., Zhang, X.: C-SASO: a clustering-based size-adaptive safer oversampling technique for imbalanced SAR ship classification. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2022)

    Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  15. Miao, W., Geng, J., Jiang, W.: Semi-supervised remote-sensing image scene classification using representation consistency siamese network. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  16. Reddi, S., et al.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020)

  17. Sarkar, D., Narang, A., Rai, S.: Fed-focal loss for imbalanced data classification in federated learning. arXiv preprint arXiv:2011.06283 (2020)

  18. Shi, J., Wu, T., Yu, H., Qin, A., Jeon, G., Lei, Y.: Multi-layer composite autoencoders for semi-supervised change detection in heterogeneous remote sensing images. SCIENCE CHINA Inf. Sci. 66(4), 140308 (2023)

    Article  Google Scholar 

  19. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  20. Wang, L., Xu, S., Wang, X., Zhu, Q.: Addressing class imbalance in federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10165–10173 (2021)

    Google Scholar 

  21. Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)

    Article  Google Scholar 

  22. Zhang, Y., Lei, Z., Yu, H., Zhuang, L.: Imbalanced high-resolution SAR ship recognition method based on a lightweight CNN. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  23. Zhuang, Y., et al.: A hybrid framework based on classifier calibration for imbalanced aerial scene recognition. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, pp. 110–121. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30111-7_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Zhuang, Y., Yang, G., Huang, Y., Ding, X. (2024). A Two-Stage Federated Learning Framework for Class Imbalance in Aerial Scene Classification. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics