Skip to main content

Pseudo Labels Refinement with Stable Cluster Reconstruction for Unsupervised Re-identification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14428))

Included in the following conference series:

  • 329 Accesses

Abstract

Most existing unsupervised re-identification uses a clustering-based approach to generate pseudo-labels as supervised signals, allowing deep neural networks to learn discriminative representations without annotations. However, drawbacks in clustering algorithms and the absence of discriminatory ability early in training limit better performance seriously. A severe problem arises from path dependency, wherein noisy samples rarely have a chance to escape from their assigned clusters during iterative training. To tackle this challenge, we propose a novel label refinement strategy based on the stable cluster reconstruction. Our approach contains two modules, the stable cluster reconstruction (SCR) module and the similarity recalculate (SR) module. It reconstructs more stable clusters and re-evaluates the relationship between samples and clearer cluster representatives, providing complementary information for pseudo labels at the instance level. Our proposed approach effectively improves unsupervised reID performance, achieving state-of-the-art performance on four benchmark datasets. Specifically, our method achieves 46.0% and 39.1% mAP on the challenging dataset VeRi776 and MSMT17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ming, Z., et al.: Deep learning-based person re-identification methods: a survey and outlook of recent works. Image Vis. Comput. 119, 104394 (2022)

    Article  Google Scholar 

  2. He, S., Luo, H., Wang, P., Wang, F., Li, H., Jiang, W.: TransReID: transformer-based object re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15013–15022 (2021)

    Google Scholar 

  3. Chen, Y., Wang, H., Sun, X., Fan, B., Tang, C., Zeng, H.: Deep attention aware feature learning for person re-identification. Pattern Recogn. 126, 108567 (2022)

    Article  Google Scholar 

  4. Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10981–10990 (2020)

    Google Scholar 

  5. Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6112–6121 (2019)

    Google Scholar 

  6. Zhai, Y., et al.: AD-Cluster: augmented discriminative clustering for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9021–9030 (2020)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  8. Ge, Y., Zhu, F., Chen, D., Zhao, R., et al.: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id. Adv. Neural. Inf. Process. Syst. 33, 11309–11321 (2020)

    Google Scholar 

  9. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  10. He, T., Shen, L., Guo, Y., Ding, G., Guo, Z.: Secret: Self-consistent pseudo label refinement for unsupervised domain adaptive person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 879–887 (2022)

    Google Scholar 

  11. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprint arXiv:2001.01526 (2020)

  12. Lin, Y., Xie, L., Wu, Y., Yan, C., Tian, Q.: Unsupervised person re-identification via softened similarity learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3390–3399 (2020)

    Google Scholar 

  13. Lin, Y., Dong, X., Zheng, L., Yan, Y., Yang, Y.: A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8738–8745 (2019)

    Google Scholar 

  14. Chen, H., Lagadec, B., Bremond, F.: Ice: inter-instance contrastive encoding for unsupervised person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14960–14969 (2021)

    Google Scholar 

  15. Cho, Y., Kim, W.J., Hong, S., Yoon, S.E.: Part-based pseudo label refinement for unsupervised person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7308–7318 (2022)

    Google Scholar 

  16. Lian, J., Wang, D.H., Du, X., Wu, Y., Zhu, S.: Exploiting robust memory features for unsupervised reidentification. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol. 13535, pp. 655–667. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18910-4_52

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  18. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  19. Dai, Z., Wang, G., Yuan, W., Zhu, S., Tan, P.: Cluster contrast for unsupervised person re-identification. In: Proceedings of the Asian Conference on Computer Vision, pp. 1142–1160 (2022)

    Google Scholar 

  20. Zhang, X., Ge, Y., Qiao, Y., Li, H.: Refining pseudo labels with clustering consensus over generations for unsupervised object re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3436–3445 (2021)

    Google Scholar 

  21. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  22. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  23. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79–88 (2018)

    Google Scholar 

  24. Liu, X., Liu, W., Mei, T., Ma, H.: A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 869–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_53

    Chapter  Google Scholar 

  25. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  26. Zhang, X., et al.: Implicit sample extension for unsupervised person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7369–7378 (2022)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Industry-University Cooperation Project of Fujian Science and Technology Department (No. 2021H6035), the Science and Technology Planning Project of Fujian Province (No. 2021J011191), and Fujian Key Technological Innovation and Industrialization Projects (No. 2023XQ023), and Fu-Xia-Quan National Independent Innovation Demonstration Project (No. 2022FX4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2024). Pseudo Labels Refinement with Stable Cluster Reconstruction for Unsupervised Re-identification. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics