Skip to main content

SAGE: Generating Symbolic Goals for Myopic Models in Deep Reinforcement Learning

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

Model-based reinforcement learning algorithms are typically more sample efficient than their model-free counterparts, especially in sparse reward problems. Unfortunately, many interesting domains are too complex to specify complete models, and learning a model takes a large number of environment samples. If we could specify an incomplete model and allow the agent to learn how best to use it, we could take advantage of our partial understanding of many domains. In this work we propose SAGE, an algorithm combining learning and planning to exploit a previously unusable class of incomplete models. This combines the strengths of symbolic planning and neural learning approaches in a novel way that outperforms competing methods on variations of taxi world and Minecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreas, J., Klein, D., Levine, S.: Modular multitask reinforcement learning with policy sketches. In: ICML (2017)

    Google Scholar 

  2. Bagaria, A., Konidaris, G.: Option discovery using deep skill chaining. In: ICLR (2020)

    Google Scholar 

  3. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. JAIR 13, 227–303 (2000)

    Article  MathSciNet  Google Scholar 

  4. Fan, Z., Su, R., Zhang, W., Yu, Y.: Hybrid actor-critic reinforcement learning in parameterized action space. In: IJCAI (2019)

    Google Scholar 

  5. François-Lavet, V., Bengio, Y., Precup, D., Pineau, J.: Combined reinforcement learning via abstract representations. In: AAAI (2019)

    Google Scholar 

  6. Gopalan, N., et al.: Planning with abstract Markov decision processes. In: ICAPS (2017)

    Google Scholar 

  7. Gordon, D., Fox, D., Farhadi, A.: What should i do now? Marrying reinforcement learning and symbolic planning. arXiv preprint arXiv:1901.01492 (2019)

  8. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In: NeurIPS (2018)

    Google Scholar 

  9. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML (2018)

    Google Scholar 

  10. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: ICML (2019)

    Google Scholar 

  11. Helmert, M.: The Fast Downward planning system. JAIR 26, 191–246 (2006)

    Article  Google Scholar 

  12. Illanes, L., Yan, X., Icarte, R.T., McIlraith, S.A.: Symbolic plans as high-level instructions for reinforcement learning. In: ICAPS (2020)

    Google Scholar 

  13. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. In: NeurIPS (2016)

    Google Scholar 

  14. Leonetti, M., Iocchi, L., Stone, P.: A synthesis of automated planning and reinforcement learning for efficient, robust decision-making. AIJ 241, 103–130 (2016)

    MathSciNet  Google Scholar 

  15. Levy, A., Konidaris, G., Platt, R., Saenko, K.: Learning multi-level hierarchies with hindsight. In: ICLR (2019)

    Google Scholar 

  16. Li, A.C., Florensa, C., Clavera, I., Abbeel, P.: Sub-policy adaptation for hierarchical reinforcement learning. In: ICLR (2020)

    Google Scholar 

  17. Lyu, D., Yang, F., Liu, B., Gustafson, S.: SDRL: interpretable and data-efficient deep reinforcement learning leveraging symbolic planning. In: AAAI (2019)

    Google Scholar 

  18. McDermott, D., et al.: PDDL - the planning domain definition language. Technical report, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  20. Nachum, O., Gu, S., Lee, H., Levine, S.: Data-efficient hierarchical reinforcement learning. In: NeurIPS (2018)

    Google Scholar 

  21. Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., Levine, S.: Why does hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618 (2019)

  22. Oh, J., Singh, S., Lee, H.: Value prediction network. In: NeurIPS (2017)

    Google Scholar 

  23. Roderick, M., Grimm, C., Tellex, S.: Deep abstract Q-networks. In: AAMAS (2018)

    Google Scholar 

  24. Scala, E., Haslum, P., Thiébaux, S.: Heuristics for numeric planning via subgoaling. In: IJCAI (2016)

    Google Scholar 

  25. Schaul, T., Horgan, D., Gregor, K., Silver, D.: Universal value function approximators. In: ICML (2015)

    Google Scholar 

  26. Schrittwieser, J., et al.: Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588(7839), 604–609 (2020)

    Article  Google Scholar 

  27. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  28. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  29. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. AIJ 112(1–2), 181–211 (1999)

    MathSciNet  Google Scholar 

  30. Winder, J., et al.: Planning with abstract learned models while learning transferable subtasks. In: AAAI (2020)

    Google Scholar 

  31. Yang, F., Lyu, D., Liu, B., Gustafson, S.: PEORL: Integrating symbolic planning and hierarchical reinforcement learning for robust decision-making. In: IJCAI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Chester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chester, A., Dann, M., Zambetta, F., Thangarajah, J. (2024). SAGE: Generating Symbolic Goals for Myopic Models in Deep Reinforcement Learning. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8391-9_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8390-2

  • Online ISBN: 978-981-99-8391-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics