Skip to main content

Impact of Microplastics on the Physiology of Benthos

  • Chapter
  • First Online:
Microplastic Pollution

Abstract

Microplastic pollution presents a great menace to the biodiversity occupying aquatic ecosystems by accumulating in benthic environments and adversely affecting biocenoses globally. Microplastics are globally responsible for being a major source of plastics in freshwater and marine environments. Benthos, the bottom-dwelling communities, are likely to combat extreme pressure from microplastics. The content of microplastic fragments revealed the taxa-specific accumulations usually in the digestive tract in benthic organisms. Microplastic interferes with benthos by reducing feeding capacity, lowering energy reserves, slow growth, low reproduction, body deformations, abnormal behavior, affecting lipid metabolism, and interference with swimming. The gastropods and the bivalves exhibit the presence of microplastics, and the filter feeders display the highest quantity of microplastics. Microplastics contribute adversely to the growth and development of benthos. Some adverse effects include reduced growth, inflammation, decreased acetylcholinesterase activity, decreased swimming speed, and intestinal injury. For example, growth inhibition in the sandworm (Annelida), inhibition in the feeding and growth of urchins (Echinodermata), and neurotoxicity in mussels (Mollusca) are caused by microplastics. Microplastics absorb potentially toxic pollutants and contribute to their transfer across the food chain consequently inflicting indirect effects on the benthos. Microplastics have an established adverse impact on the physiology of benthos in marine and freshwater ecosystems, which ultimately have ecological consequences. Microplastic management strategies include minimizing the microplastic input into marine ecosystems, restricting single-use plastics, reusing, and recycling plastics, and microbeads. The legislation to curb plastic production and usage, social awareness campaigns, and research initiatives to restrict the entry of microplastics into aquatic ecosystems could save benthos from this adversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro-Núñez A, Astorga D, Cáceres-Farías L, Bastidas L, Soto Villegas C, Macay KC, Christensen JH (2021) Microplastic pollution in seawater and marine organisms across the tropical eastern Pacific and Galápagos. Sci Rep 11(1):1–8

    Article  Google Scholar 

  • Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34(11):2564–2572

    Article  CAS  PubMed  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(1–3):212–226

    Article  CAS  PubMed  Google Scholar 

  • Bellasi A, Binda G, Pozzi A, Galafassi S, Volta P, Bettinetti R (2020) Microplastic contamination in freshwater environments: a review, focusing on interactions with sediments and benthic organisms. Environments 7(4):30

    Article  Google Scholar 

  • Bergami E, Bocci E, Vannuccini ML, Monopoli M, Salvati A, Dawson KA, Corsi I (2016) Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicol Environ Saf 123:18–25

    Article  CAS  PubMed  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, Van Den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593–600

    Article  CAS  PubMed  Google Scholar 

  • Blarer P, Burkhardt-Holm P (2016) Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ Sci Pollut Res 23:23522–23532

    Article  CAS  Google Scholar 

  • Bouwmeester H, Hollman PC, Peters RJ (2015) Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947

    Article  CAS  PubMed  Google Scholar 

  • Browne MA (2015) Sources and pathways of microplastics to habitats. In: Marine anthropogenic litter, pp 229–244

    Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031

    Article  CAS  PubMed  Google Scholar 

  • Campanale C, Stock F, Massarelli C, Kochleus C, Bagnuolo G, Reifferscheid G, Uricchio VF (2020) Microplastics and their possible sources: the example of Ofanto river in Southeast Italy. Environ Pollut 258:113284

    Article  CAS  PubMed  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    Article  CAS  PubMed  Google Scholar 

  • Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8(9):3494–3511

    Article  CAS  Google Scholar 

  • Chatterjee S, Sharma S (2019) Microplastics in our oceans and marine health. Field actions science reports. J Field Actions (Special Issue 19), 54–61

    Google Scholar 

  • Cincinelli A, Scopetani C, Chelazzi D, Lombardini E, Martellini T, Katsoyiannis A et al (2017) Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere 175:391–400

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Conlan KE, Kim SL, Lenihan HS, Oliver JS (2004) Benthic changes during 10 years of organic enrichment by McMurdo Station, Antarctica. Mar Pollut Bull 49(1–2):43–60

    Article  CAS  PubMed  Google Scholar 

  • De Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN (2018) Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ 645:1029–1039

    Article  PubMed  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and detritus by freshwater and marine zooplankton. Bull Mar Sci 43(3):486–499

    Google Scholar 

  • do Sul JAI, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364

    Article  Google Scholar 

  • Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):1–25

    Article  CAS  Google Scholar 

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3

    Article  CAS  PubMed  Google Scholar 

  • Gall SC, Thompson RC (2015) The impact of debris on marine life. Mar Pollut Bull 92(1–2):170–179

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Liu X, Junaid M, Liao H, Chen G, Wu Y, Wang J (2022) Toxicological impacts of micro (nano) plastics in the benthic environment. Sci Total Environ 836:155620

    Article  CAS  PubMed  Google Scholar 

  • Guerra R, Fetter E, Ceschim LM, Martins CC (2011) Trace metals in sediment cores from deception and Penguin islands (South Shetland Islands, Antarctica). Mar Pollut Bull 62(11):2571–2575

    Article  CAS  PubMed  Google Scholar 

  • Guzzetti E, Sureda A, Tejada S, Faggio C (2018) Microplastic in marine organism: environmental and toxicological effects. Environ Toxicol Pharmacol 64:164–171

    Article  CAS  PubMed  Google Scholar 

  • Haegerbaeumer A, Mueller M-T, Fueser H, Traunspurger W (2019) Impacts of micro-and nano-sized plastic particles on benthic invertebrates: a literature review and gap analysis. Front Environ Sci 7:17

    Article  Google Scholar 

  • Heindler FM, Alajmi F, Huerlimann R, Zeng C, Newman SJ, Vamvounis G, van Herwerden L (2017) Toxic effects of polyethylene terephthalate microparticles and Di (2-ethylhexyl) phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicol Environ Saf 141:298–305

    Article  CAS  PubMed  Google Scholar 

  • Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T (2017) Microplastics in the southern ocean. Mar Pollut Bull 114(1):623–626

    Article  CAS  PubMed  Google Scholar 

  • Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48(3):1638–1645

    Article  CAS  PubMed  Google Scholar 

  • Kärrman A, Schönlau C, Engwall M (2016) Exposure and effects of microplastics on wildlife: a review of existing data. Retrieved from Örebro University, Sweden

    Google Scholar 

  • Kress N (2019) Chapter 3. Seawater quality for desalination plants. In: Marine impacts of seawater desalination, pp 35–52

    Google Scholar 

  • Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar Pollut Bull 18(6):319–326

    Article  Google Scholar 

  • Lee K-W, Shim WJ, Kwon OY, Kang J-H (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47(19):11278–11283

    Article  CAS  PubMed  Google Scholar 

  • Lenihan HS, Oliver JS (1995) Anthropogenic and natural disturbances to marine benthic communities in Antarctica. Ecol Appl:311–326

    Google Scholar 

  • Li S, Li F, Liua Q, Suzukib Y (n.d.) Processes and impacts. Management, 16, 17

    Google Scholar 

  • Lusher AL, Hernandez-Milian G, O'Brien J, Berrow S, O’Connor I, Officer R (2015) Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environ Pollut 199:185–191

    Article  CAS  PubMed  Google Scholar 

  • Magni S, Gagné F, André C, Della Torre C, Auclair J, Hanana H et al (2018) Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). Sci Total Environ 631:778–788

    Article  PubMed  Google Scholar 

  • Manokaran S, Joydas TV, Khan A (2022) Physico-chemical factors regulating marine benthos structure and function. In: Ecology and biodiversity of benthos. Elsevier, pp 209–250

    Google Scholar 

  • Martínez-Gómez C, León VM, Calles S, Gomáriz-Olcina M, Vethaak AD (2017) The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar Environ Res 130:69–76

    Article  PubMed  Google Scholar 

  • Messinetti S, Mercurio S, Parolini M, Sugni M, Pennati R (2018) Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies. Environ Pollut 237:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Mkuye R, Gong S, Zhao L, Masanja F, Ndandala C, Bubelwa E et al (2022) Effects of microplastics on physiological performance of marine bivalves, potential impacts, and enlightening the future based on a comparative study. Sci Total Environ 838:155933

    Article  CAS  PubMed  Google Scholar 

  • Munari C, Infantini V, Scoponi M, Rastelli E, Corinaldesi C, Mistri M (2017) Microplastics in the sediments of terra nova bay (ross sea, Antarctica). Mar Pollut Bull 122(1–2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Nerland IL, Halsband C, Allan I, Thomas KV (2014) Microplastics in marine environments: occurrence, distribution and effects

    Google Scholar 

  • Paul-Pont I, Lacroix C, Fernández CG, Hégaret H, Lambert C, Le Goïc N et al (2016) Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut 216:724–737

    Article  CAS  PubMed  Google Scholar 

  • Piarulli S, Vanhove B, Comandini P, Scapinello S, Moens T, Vrielinck H et al (2020) Do different habits affect microplastics contents in organisms? A trait-based analysis on salt marsh species. Mar Pollut Bull 153:110983

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Hasselerharm PE, Falahudin D, Peeters ET, Koelmans AA (2018) Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ Sci Technol 52(4):2278–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert J, Schellenberg J, Schubert P, Wilke T (2018) Responses of reef building corals to microplastic exposure. Environ Pollut 237:955–960

    Article  CAS  PubMed  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94(3):849–873

    Article  PubMed  Google Scholar 

  • Reiss H, Birchenough S, Borja A, Buhl-Mortensen L, Craeymeersch J, Dannheim J et al (2015) Benthos distribution modelling and its relevance for marine ecosystem management. ICES J Mar Sci 72(2):297–315

    Article  Google Scholar 

  • Rubin AE, Zucker I (2022) Interactions of microplastics and organic compounds in aquatic environments: a case study of augmented joint toxicity. Chemosphere 289:133212

    Article  CAS  PubMed  Google Scholar 

  • Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102(1):95–101

    Article  PubMed  Google Scholar 

  • Sfriso AA, Tomio Y, Rosso B, Gambaro A, Sfriso A, Corami F et al (2020) Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environ Int 137:105587

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24(27):21530–21547

    Article  Google Scholar 

  • Stark JS, Raymond T, Deppeler SL, Morrison AK (2019) Antarctic seas. In: World seas: an environmental evaluation. Elsevier, pp 1–44

    Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster M, Roberts C (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshwat Ecosyst 13(S1):S5–S20

    Article  Google Scholar 

  • Straub S, Hirsch PE, Burkhardt-Holm P (2017) Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int J Environ Res Public Health 14(7):774

    Article  PubMed  PubMed Central  Google Scholar 

  • Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ et al (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113(9):2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RB (2019) Epiflora and epifauna

    Google Scholar 

  • Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Björn A et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364(1526):2027–2045

    Article  CAS  Google Scholar 

  • Vivekanand AC, Mohapatra S, Tyagi VK (2021) Microplastics in aquatic environment: challenges and perspectives. Chemosphere 282:131151

    Article  CAS  PubMed  Google Scholar 

  • Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6(9):e24570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubashar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M., Blache, D., Maloney, S.K. (2024). Impact of Microplastics on the Physiology of Benthos. In: Shahnawaz, M., Adetunji, C.O., Dar, M.A., Zhu, D. (eds) Microplastic Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-99-8357-5_21

Download citation

Publish with us

Policies and ethics