Skip to main content

Exploring the Potentiality of Bacillus amyloliquefaciens as a Prominent Biocontrol Agent: A Comprehensive Overview

  • Chapter
  • First Online:
Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond

Abstract

One of the most potential bacteria for plant growth promotion with minimal adverse reactions is Bacillus amyloliquefaciens. The plant growth-promoting (PGP) mechanisms of B. amyloliquefaciens have received a great deal of attention since it is a highly effective biofertiliser and biocontrol agent in agriculture. In this work, we studied B. amyloliquefaciens’s PGP processes as well as the present restrictions on its use in agriculture. Primarily, B. amyloliquefaciens can increase the availability of soil nutrients by increasing the delivery of nitrogen, solubilisation of potassium and phosphate, and the production of siderophores. Subsequently, B. amyloliquefaciens can alter the soil microbial community by increasing the accessibility of minerals and enhancing the environment for plant growth. Additionally, B. amyloliquefaciens can also emit hormones and volatile organic compounds (VOCs) linked to plant cell proliferation and root development, which would enhance plants’ ability to absorb nutrients. B. amyloliquefaciens can also help in increasing the plant resistance to biotic stressors caused by soil pathogens by competing for nutrients and functions, creating compounds such cyclic lipopeptides and VOCs that directly combat pathogens and system resistance in the plants. Similar to this, B. amyloliquefaciens inoculation can stimulate plant growth by altering the host plant’s genetic makeup, chemistry, and physical structure to make it more resilient to abiotic stressors. It is additionally suggested that in future research, greater attention should be made to nitrogen absorption processes of plants using improved methodologies in varied soil conditions and locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah DB, Frikha-Gargouri O, Tounsi S (2015) Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 119(1):196–207

    Article  PubMed  Google Scholar 

  • Abdallah DB, Frikha-Gargouri O, Tounsi S (2018) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control 124:61–67

    Article  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174

    Article  CAS  PubMed  Google Scholar 

  • Alwang J, Gotor E, Thiele G, Hareau G, Jaleta M, Chamberlin J (2019) Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers. Agric Syst 172:16–27

    Article  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys ActaBiomembr 1713(1):51–56

    Article  CAS  Google Scholar 

  • Bai ZH, Zhou CG, Cao JX, Xu SJ, Wu SH, Li DS (2014) Effects of Bacillus amyloliquefaciens biofertilizer on tea yield and quality. Agric Sci Technol 15(11):1883–1887

    CAS  Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove - a review. Biocatal Agric Biotechnol 3(2):97–110

    Article  Google Scholar 

  • Ben A, Abdallah R, Jabnoun-Khiareddine H, Nefzi A, Mokni-Tlili S, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems. J Phytopathol 164:811–824

    Article  Google Scholar 

  • Butait˙e E, Baumgartner M, Wyder S, Kümmerli R (2017) Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 8(1):1–12

    Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Zhang YY, Fu XC, Li Y, Wang Q (2016) Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol Technol 115:113–121

    Article  CAS  Google Scholar 

  • Chen B, Luo S, Wu YJ, Ye JY, Wang Q, Xu XM, Pan FS, Khan KY, Feng Y, Yang XE (2017) The effects of the endophytic bacterium Pseudomonas fluorescensSasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alqu’eres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28(9):984–995

    Article  CAS  PubMed  Google Scholar 

  • Cui WY, He PJ, Munir S, He PB, Li XY, Li YM, Wu JJ, Wu YX, Yang LJ, He PF (2019) Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight. Biol Control 139:104080

    Article  CAS  Google Scholar 

  • Cui L, Yang C, Wang Y, Ma T, Cai F, Wei L, Jin M, Osei R, Zhang J, Tang M (2022) Potential of an endophytic bacteria Bacillus amyloliquefaciens 3–5 as biocontrol agent against potato scab. Microb Pathog 163:105382

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Zhou ZX, Zheng XH, Li CS (2013) Modeling impacts of fertilization alternatives on nitrous oxide and nitric oxide emissions from conventional vegetable fields in southeastern China. Atmos Environ 81:642–650

    Article  CAS  Google Scholar 

  • Dimopoulou A, Theologidis I, Benaki D, Koukounia M, Zervakou A, Tzima A, Diallinas G, Hatzinikolaou DG, Skandalis N (2021) Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600. Msphere 6(4):e00376–e00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 17–46

    Chapter  Google Scholar 

  • Garrido A, Atencio LA, Bethancourt R, Bethancourt A, Guzm’an H, Guti’errez M, Durant-Archibold AA (2020) Antibacterial activity of volatile organic compounds produced by the octocoral-associated bacteria bacillus sp. BO53 and Pseudoalteromonas sp GA327. Antibiotics 9(12):923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowtham HG, Murali M, Singh SB, Lakshmeesha TR, Murthy KN, Amruthesh KN, Niranjana SR (2018) Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol Control 126:209–217

    Article  CAS  Google Scholar 

  • Gu SH, Wei Z, Shao ZY, Friman VP, Cao KH, Yang TJ, Kramer J, Wang XF, Li M, Xu YC (2020) Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol 5(8):1002–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Li YL, Lou Y, Shi MD, Jiang YY, Zhou JH, Sun YF, Xue QH, Lai HX (2019) Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Appl Soil Ecol 137:154–166

    Article  Google Scholar 

  • Gupta S, Singh UB, Kumar A, Ramtekey V, Jayaswal D, Singh AN, Sahni P, Kumar S (2022) Role of rhizosphere microorganisms in endorsing overall plant growth and development. In: Re-visiting the rhizosphere eco-system for agricultural sustainability. Springer Nature, Singapore, pp 323–353

    Chapter  Google Scholar 

  • Hafsteinsd’ottir EG, Camenzuli D, Rocavert AL, Walworth J, Gore DB (2015) Chemical immobilization of metals and metalloids by phosphates. Appl Geochem 59:47–62

    Article  Google Scholar 

  • Han LJ, Wang ZY, Li N, Wang YH, Feng JT, Zhang X (2019) Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl Soil Ecol 136:55–66

    Article  Google Scholar 

  • Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Hu XF, Li WT, Liu QH, Yin CY (2021) Interactions between species changes the uptake of ammonium and nitrate in Abies faxoniana and Picea asperata. Tree Physiol 42:1396–1410. https://doi.org/10.1093/treephys/tpab175

    Article  CAS  Google Scholar 

  • Jamali H, Sharma A, Kushwaha P, Roohi PLK, Srivastava AK (2018) Exploitation of multifarious abiotic stresses, antagonistic activity and plant growth promoting attributes of Bacillus amyloliquefaciens AH53 for sustainable agriculture production. Int J Curr Microbiol App Sci 7(10):751–763

    Article  CAS  Google Scholar 

  • Ji CL, Zhang ML, Kong ZR, Chen X, Wang X, Ding W, Lai HX, Guo Q (2021) Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by bacillus amyloliquefaciens Ba13. Microbiol Spectr 9(3):e01615–e01621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao R, Cai Y, He P, Munir S, Li X, Wu Y, Wang J, Xia M, He P, Wang G, Yang H, Karunarathna SC, Xie Y, He Y (2021) Bacillus amyloliquefaciens YN201732 produces lipopeptides with promising biocontrol activity against fungal pathogen Erysiphe cichoracearum. Front Cell Infect Microbiol 11:598999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Amoozegar A, Hesterberg D, Osmond DL (2011) Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma 161:194–201

    Article  CAS  Google Scholar 

  • Kannojia P, Sharma PK, Kashyap AK, Manzar N, Singh UB, Chaudhary K, Malviya D, Singh S, Sharma SK (2017) Microbe-mediated biotic stress management in plants. In: Plant-microbe interactions in Agro-ecological perspectives: microbial interactions and Agro-ecological impacts, vol 2, pp 627–648

    Google Scholar 

  • Kashyap AS, Pandey VK, Manzar N, Kannojia P, Singh UB, Sharma PK (2017) Role of plant growth-promoting rhizobacteria for improving crop productivity in sustainable agriculture. In: Plant-microbe interactions in Agro-ecological perspectives: microbial interactions and Agro-ecological impacts, vol 2, pp 673–693

    Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130

    Article  CAS  Google Scholar 

  • Kazerooni EA, Maharachchikumbura SS, Al-Sadi AM, Kang SM, Yun BW, Lee IJ (2021) Biocontrol potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi 7(6):472

    Article  CAS  Google Scholar 

  • Kumar M, Singh UB, Pathak RK (2016) Ecological success of compatible microbes in consortia isolated from rice rhizosphere for growth and yield of mung bean (Vigna radiata L.). J Pure Appl Microbiol 10(4):3231–3239

    Article  Google Scholar 

  • Kümmerli R, Schiessl KT, Waldvogel T, McNeill K, Ackermann M (2014) Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol Lett 17(12):1536–1544

    Article  PubMed  Google Scholar 

  • Lu P, Jiang K, Hao YQ, Chu WY, Xu YD, Yang JY, Chen JL, Zeng GH, Gu ZH, Zhao HX (2021) Profiles of Bacillus spp. isolated from the rhizosphere of Suaeda glauca and their potential to promote plant growth and suppress fungal phytopathogens. J Microbiol Biotechnol 31(9):1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV (2022) Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 13:994847

    Article  PubMed  PubMed Central  Google Scholar 

  • Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Singh S, Kumar M, Paul D, Rai JP, Singh HV (2020a) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Environ Res Public Health 17(4):1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malviya D, Singh UB, Singh S, Sahu PK, Pandiyan K, Kashyap AS, Manzar N, Sharma PK, Singh HV, Rai JP, Sharma SK (2020b) Microbial interactions in the rhizosphere contributing crop resilience to biotic and abiotic stresses. In: Rhizosphere Microbes: Soil and Plant Functions. Springer Nature, Singapore, pp 1–33

    Google Scholar 

  • Malviya D, Ilyas T, Chaurasia R, Singh UB, Shahid M, Vishwakarma SK, Shafi Z, Yadav B, Sharma SK, Singh HV (2022a) Engineering the plant microbiome for biotic stress tolerance: biotechnological advances. In: Rhizosphere microbes: biotic stress management. Springer Nature, Singapore, pp 133–151

    Chapter  Google Scholar 

  • Malviya D, Thosar R, Kokare N, Pawar S, Singh UB, Saha S, Rai JP, Singh HV, Somkuwar RG, Saxena AK (2022b) A comparative analysis of microbe-based technologies developed at ICAR-NBAIM against Erysiphe necator causing powdery mildew disease in grapes (Vitis vinifera L.). Front Microbiol 13:871901

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Pirttila AM, Mohammad ParastTabas H, Baruah N, Koskim¨aki JJ (2021) Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9(4):817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao JQ, Wu HJ, Huo R, Gao XW, Borriss R (2014) Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarumFZB42 engineered for improved action. Chem Biol Technol Agric 1(1):1–14

    Article  CAS  Google Scholar 

  • Qin YX, Shang QM, Zhang Y, Li PL, Chai YR (2017) Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol 8:2620

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza W, Wei Z, Ling N, Huang QW, Shen QR (2016) Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains. J Biotechnol 227:43–53

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash GP, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Paul S, Paul D, Kuppusamy P, Singh HV, Saxena AK (2020a) A simplified protocol for reversing phenotypic conversion of Ralstonia solanacearum during experimentation. Int J Environ Res Public Health 17(12):4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Singh S, Gupta AR, Gupta A, Singh UB, Manzar N, Bhowmik A, Singh HV, Saxena AK (2020b) Endophytic bacilli from medicinal-aromatic perennial holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control 150:104353

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Singh UB, Chakdar H, Sharma PK, Sarma BK, Teli B, Bajpai R, Bhowmik A, Singh HV, Saxena AK (2021) Inter-genera colonization of Ocimum tenuiflorum endophytes in tomato and their complementary effects on Na+/K+ balance, oxidative stress regulation, and root architecture under elevated soil salinity. Front Microbiol 12:744733

    Article  PubMed  PubMed Central  Google Scholar 

  • Samaras A, Efthimiou K, Roumeliotis E, Karaoglanidis GS (2016) Biocontrol potential and plant-growth-promoting effects of Bacillus amyloliquefaciens MBI 600 against Fusarium oxysporum f. sp. radicis-lycopersici on tomato. In: V International Symposium on Tomato Diseases: Perspectives and Future Directions in Tomato Protection, vol 1207, pp 139–146

    Google Scholar 

  • Shafi Z, Ilyas T, Shahid M, Vishwakarma SK, Malviya D, Yadav B, Sahu PK, Singh UB, Rai JP, Singh HB, Singh HV (2023) Microbial Management of Fusarium Wilt in Banana: a comprehensive overview. In: Detection, diagnosis and management of soil-borne phytopathogens. Springer Nature, Singapore, pp 413–435

    Chapter  Google Scholar 

  • Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S (2021) Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front Sust Food 5:37

    Google Scholar 

  • Shahid M, Singh UB, Ilyas T, Malviya D, Vishwakarma SK, Shafi Z, Yadav B, Singh HV (2022a) Bacterial inoculants for control of fungal diseases in Solanum lycopersicum L.(tomatoes): a comprehensive overview. In: Rhizosphere microbes: biotic stress management. Springer Nature, Singapore, pp 311–339

    Chapter  Google Scholar 

  • Shahid M, Zeyad MT, Syed A, Singh UB, Mohamed A, Bahkali AH, Elgorban AM, Pichtel J (2022b) Stress-tolerant endophytic isolate Priestia aryabhattai BPR-9 modulates physio-biochemical mechanisms in wheat (Triticum aestivum L.) for enhanced salt tolerance. Int J Environ Res Public Health 19(17):10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Khan MS, Singh Udai B (2023a) Pesticide-tolerant microbial consortia: potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. Environ Res 236:116724. https://doi.org/10.1016/j.envres.2023.116724

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Singh UB, Khan MS, Singh P, Kumar R, Singh RN, Kumar A, Singh HV (2023b) Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front Microbiol 14:1132770

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad R, Bilal S, Imran M, Khan AL, Alosaimi AA, Al-Shwyeh HA, Almahasheer H, Rehman S, Lee IJ (2019) Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochem J 476(21):3385–3400

    Article  CAS  PubMed  Google Scholar 

  • Shao JH, Xu ZH, Zhang N, Shen QR, Zhang RF (2015) Contribution of indole-3- acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils 51(3):321–330

    Article  CAS  Google Scholar 

  • Sharma SK, Ramesh A, Johri BN (2013) Isolation and characterization of plant growth promoting Bacillus amyloliquefaciens strain sks_bnj_1 and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). J Virol Microbiol 2013:1–19

    Google Scholar 

  • Sharma V, Kaur J, Sharma S (2020) Plant growth promoting rhizobacteria: potential for sustainable agriculture. Biotecnol Veg 20(3):157–166

    Google Scholar 

  • Sheteiwy MS, AbdElgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, Shaghaleh M, Hamoud YA, El-Sawah AM (2021) Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol Plant 172(4):2153–2169

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185

    Chapter  Google Scholar 

  • Singh UB, Malviya D, Singh S, Imran M, Pathak N, Alam M, Rai JP, Singh RK, Sarma BK, Sharma PK, Sharma AK (2016a) Compatible salt-tolerant rhizosphere microbe-mediated induction of phenylpropanoid cascade and induced systemic responses against Bipolaris sorokiniana (Sacc.) shoemaker causing spot blotch disease in wheat (Triticum aestivum L.). Appl Soil Ecol 108:300–306

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Pradhan JK, Singh BP, Roy M, Imram M, Pathak N, Baisyal BM, Rai JP, Sarma BK (2016b) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–312

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh UB, Trivdi M, Malviya D, Sahu PK, Roy M, Sharma PK, Singh HV, Manna MC, Saxena AK (2021a) Restructuring the cellular responses: connecting microbial intervention with ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline–sodic soil. Front Microbiol 12(11):568325

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Singh P, Ghatak A, Imran M, Rai JP, Singh RK, Manna MC, Sharma AK, Saxena AK (2021b) Salt-tolerant compatible microbial inoculants modulate physio-biochemical responses enhance plant growth, Zn biofortification and yield of wheat grown in saline-sodic soil. Int J Environ Res Public Health 18(18):9936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan SY, Jiang Y, Song S, Huang JF, Ling N, Xu YC, Shen QR (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot 43:134–140

    Article  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Ustiatik R, Nuraini Y, Handayanto E (2021) Siderophore production of the hg-resistant endophytic bacteria isolated from local grass in the hg-contaminated soil. J Ecol Eng 22(5):129–138

    Article  Google Scholar 

  • Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124(3):764–778

    Article  CAS  PubMed  Google Scholar 

  • Vinci G, Cozzolino V, Mazzei P, Monda H, Savy D, Drosos M, Piccolo A (2018) Effects of Bacillus amyloliquefaciens and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 429(1):437–450

    Article  CAS  Google Scholar 

  • Wen ZH, White PJ, Shen JB, Lambers H (2021) Linking root exudation to belowground economic traits for resource acquisition. New Phytol 233(4):1620–1635

    Article  PubMed  Google Scholar 

  • Wu YC, Zhou JY, Li CG, Ma Y (2019) Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Microbiology Open 8(8):e00813

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue LX, Sun B, Yang YH, Jin B, Zhuang GQ, Bai ZH, Zhuang XL (2021) Efficiency and mechanism of reducing ammonia volatilization in alkaline farmland soil using Bacillus amyloliquefaciens biofertilizer. Environ Res 202:111672

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX (2018) Rhizobial biogeography and inoculation application to soybean in four regions across China. J Appl Microbiol 125(3):853–866

    Article  CAS  PubMed  Google Scholar 

  • Yu SM, Oh BT, Lee YH (2012) Biocontrol of green and blue molds in postharvest Satsuma mandarin using Bacillus amyloliquefaciens JBC36. Biocontrol Sci Tech 22(10):1181–1197

    Article  Google Scholar 

  • Zhang YX, Paschold A, Marcon C, Liu S, Tai HH, Nestler J, Yeh CT, Opitz N, Lanz C, Schnable PS (2014) The aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot 65(17):4919–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Yang DQ, Kendall JRA, Borriss R, Druzhinina IS, Kubicek CP, Shen QR, Zhang RF (2016) Comparative genomic analysis of bacillus amyloliquefaciens and Bacillus subtilisreveals evolutional traits for adaptation to plant-associated habitats. Front Microbiol 7:2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu FL, Qu LY, Hong XG, Sun XQ (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from DaqiaoSaltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011:615032

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Director, ICAR-NBAIM, Mau for providing scientific and technical support during preparation of the manuscript. The authors gratefully acknowledge the Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, Ministry of Agriculture and Farmers Welfare, Government of India, for providing financial support for the study.

Conflicts of Interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the content reported in this manuscript. The authors declare no conflict of interest.

Funding

This research was supported by Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, New Delhi (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilyas, T. et al. (2024). Exploring the Potentiality of Bacillus amyloliquefaciens as a Prominent Biocontrol Agent: A Comprehensive Overview. In: Mageshwaran, V., Singh, U.B., Saxena, A.K., Singh, H.B. (eds) Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond. Microorganisms for Sustainability, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-99-8195-3_7

Download citation

Publish with us

Policies and ethics