Skip to main content

From Incompleteness to Unity: A Framework for Multi-view Clustering with Missing Values

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 432 Accesses

Abstract

The assumption of data completeness plays a significant role in the effectiveness of current Multi-view Clustering (MVC) methods. However, data collection and transmission would unavoidably breach this assumption, resulting in the Partially Data-missing Problem (PDP). A common remedy is to first impute missing values and then conduct MVC methods, which may cause performance degeneration due to inaccurate imputation. To address these issues in PDP, we introduce an imputation-free framework that utilizes a matrix correction technique, employing a novel two-stage strategy termed ’correction-clustering’. In the first stage, we correct distance matrices derived from incomplete data and compute affinity matrices. Following this, we integrate them with affinity-based MVC methods. This approach circumvents the uncertainties associated with inaccurate imputations, enhancing clustering performance. Comprehensive experiments show that our method outperforms traditional imputation-based techniques, yielding superior clustering results across various levels of missing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mldta.com/dataset/msrc-v1/.

  2. 2.

    https://cam-orl.co.uk/facedatabase.html.

  3. 3.

    https://ww2.mathworks.cn/help/stats/spectralcluster.html.

References

  1. Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly incomplete information. In: 2010 48th Annual Allerton conference on Communication, Control, and Computing (Allerton), pp. 704–711. IEEE (2010)

    Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418–443 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, M.W., Mezher, D., Philippe, B., Sameh, A.: Parallel algorithms for the singular value decomposition. In: Handbook of Parallel Computing and Statistics, pp. 133–180. Chapman and Hall/CRC (2005)

    Google Scholar 

  4. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference, pp. 28–47. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-9940-7_3

  5. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candes, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012)

    Article  MATH  Google Scholar 

  7. Du, L., et al.: Robust multiple kernel K-means using L21-Norm. In: 24th International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  8. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, J., Udell, M.: Online high rank matrix completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8690–8698 (2019)

    Google Scholar 

  10. Guo, J., Ye, J.: Anchors bring ease: an embarrassingly simple approach to partial multi-view clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 118–125 (2019)

    Google Scholar 

  11. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasan, M.K., Alam, M.A., Roy, S., Dutta, A., Jawad, M.T., Das, S.: Missing value imputation affects the performance of machine learning: a review and analysis of the literature (2010–2021). Inf. Med. Unlocked 27, 100799 (2021)

    Article  Google Scholar 

  13. Huang, H.C., Chuang, Y.Y., Chen, C.S.: Affinity aggregation for spectral clustering. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 773–780. IEEE (2012)

    Google Scholar 

  14. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  15. Li, S.Y., Jiang, Y., Zhou, Z.H.: Partial multi-view clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  16. Li, W.: Estimating jaccard index with missing observations: a matrix calibration approach. In: Advances in Neural Information Processing Systems, vol. 28, pp. 2620–2628. Canada (2015)

    Google Scholar 

  17. Li, W.: Scalable calibration of affinity matrices from incomplete observations. In: Asian Conference on Machine Learning, pp. 753–768. PMLR, Bangkok, Thailand (2020)

    Google Scholar 

  18. Li, W., Yu, F.: Calibrating distance metrics under uncertainty. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 219–234. Springer (2022). https://doi.org/10.1007/978-3-031-26409-2_14

  19. Li, W., Yu, F., Ma, Z.: Metric nearness made practical. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 8648–8656 (2023)

    Google Scholar 

  20. Lin, W.-C., Tsai, C.-F.: Missing value imputation: a review and analysis of the literature (2006–2017). Artif. Intell. Rev. 53(2), 1487–1509 (2020). https://doi.org/10.1007/s10462-019-09709-4

    Article  Google Scholar 

  21. Liu, J., et al.: Optimal neighborhood multiple kernel clustering with adaptive local kernels. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  22. Liu, J., et al.: Self-representation subspace clustering for incomplete multi-view data. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2726–2734 (2021)

    Google Scholar 

  23. Liu, X., et al.: Efficient and effective regularized incomplete multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 43(8), 2634–2646 (2020)

    Google Scholar 

  24. Liu, X.: Multiple kernel \(k\) k-means with incomplete kernels. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1191–1204 (2019)

    Google Scholar 

  25. Nader, R., Bretto, A., Mourad, B., Abbas, H.: On the positive semi-definite property of similarity matrices. Theoret. Comput. Sci. 755, 13–28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems 14 (2001)

    Google Scholar 

  27. Nie, F., Tian, L., Li, X.: Multiview clustering via adaptively weighted procrustes. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2022–2030 (2018)

    Google Scholar 

  28. Shao, W., He, L., Yu, P.S.: Multiple incomplete views clustering via weighted nonnegative matrix factorization with \(L_{2,1}\) regularization. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 318–334. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_20

    Chapter  Google Scholar 

  29. Tang, C., et al.: CGD: multi-view clustering via cross-view graph diffusion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5924–5931 (2020)

    Google Scholar 

  30. Wang, S., et al.: Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9776–9785 (2022)

    Google Scholar 

  31. Wang, S., et al.: Multi-view clustering via late fusion alignment maximization. In: 28th International Joint Conference on Artificial Intelligence, pp. 3778–3784 (2019)

    Google Scholar 

  32. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  33. Xu, N., Guo, Y., Wang, J., Luo, X., Kong, X.: Multi-view clustering via simultaneously learning shared subspace and affinity matrix. Int. J. Adv. Rob. Syst. 14(6), 1729881417745677 (2017)

    Google Scholar 

  34. Yu, F., Bao, R., Mao, J., Li, W.: Highly-efficient Robinson-Foulds distance estimation with matrix correction. In: (to appear) 26th European Conference on Artificial Intelligence (2023)

    Google Scholar 

  35. Yu, F., Zeng, Y., Mao, J., Li, W.: Online estimation of similarity matrices with incomplete data. In: Uncertainty in Artificial Intelligence, pp. 2454–2464. PMLR (2023)

    Google Scholar 

  36. Zhan, K., Nie, F., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261–1270 (2018)

    Article  MathSciNet  Google Scholar 

  37. Zhan, K., Zhang, C., Guan, J., Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybern. 48(10), 2887–2895 (2017)

    Article  Google Scholar 

  38. Zhang, P., et al.: Adaptive weighted graph fusion incomplete multi-view subspace clustering. Sensors 20(20), 5755 (2020)

    Article  Google Scholar 

  39. Zhang, S.: Nearest neighbor selection for iteratively KNN imputation. J. Syst. Softw. 85(11), 2541–2552 (2012)

    Article  Google Scholar 

  40. Zhao, H., Liu, H., Fu, Y.: Incomplete multi-modal visual data grouping. In: 25th International Joint Conference on Artificial Intelligence, pp. 2392–2398 (2016)

    Google Scholar 

  41. Zhou, S., et al.: Multiple kernel clustering with neighbor-kernel subspace segmentation. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1351–1362 (2019)

    Article  MathSciNet  Google Scholar 

  42. Zong, L., Zhang, X., Liu, X., Yu, H.: Weighted multi-view spectral clustering based on spectral perturbation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewers for their helpful feedback that greatly improved this paper. The work of Fangchen Yu and Wenye Li was supported in part by Guangdong Basic and Applied Basic Research Foundation (2021A1515011825), Guangdong Introducing Innovative and Entrepreneurial Teams Fund (2017ZT07X152), Shenzhen Science and Technology Program (CUHKSZWDZC0004), and Shenzhen Research Institute of Big Data Scholarship Program. The work of Yuqi Ma was supported in part by CUHKSZ-SRIBD Joint PhD Program. The work of Jianfeng Mao was supported in part by National Natural Science Foundation of China under grant U1733102, in part by the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen under grant B10120210117, and in part by CUHK-Shenzhen under grant PF.01.000404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenye Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Shi, Z., Ma, Y., Mao, J., Li, W. (2024). From Incompleteness to Unity: A Framework for Multi-view Clustering with Missing Values. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics