Skip to main content

Language Guided Graph Transformer for Skeleton Action Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 388 Accesses

Abstract

The Transformer model is a novel neural network architecture based on a self-attention mechanism, primarily used in the field of natural language processing and is currently being introduced to the computer vision domain. However, the Transformer model has not been widely applied in the task of human action recognition. Action recognition is typically described as a single classification task, and the existing recognition algorithms do not fully leverage the semantic relationships within actions. In this paper, a new method named Language Guided Graph Transformer (LGGT) for Skeleton Action Recognition is proposed. The LGGT method combines textual information and Graph Transformer to incorporate semantic guidance in skeleton-based action recognition. Specifically, it employs Graph Transformer as the encoder for skeleton data to extract feature representations and effectively captures long-distance dependencies between joints. Additionally, LGGT utilizes a large-scale language model as a knowledge engine to generate textual descriptions specific to different actions, capturing the semantic relationships between actions and improving the model’s understanding and accurate recognition and classification of different actions. We extensively evaluate the performance of using the proposed method for action recognition on the Smoking dataset, Kinetics-Skeleton dataset, and NTU RGB\(+\)D action dataset. The experimental results demonstrate significant performance improvements of our method on these datasets, and the ablation study shows that the introduction of semantic guidance can further enhance the model’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

  2. Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense stereoscopic depth cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–10 (2017)

    Google Scholar 

  3. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

    Google Scholar 

  4. Li, C., Zhong, Q., Xie, D., Pu, S.: Skeleton-based action recognition with convolutional neural networks. In: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 597–600. IEEE (2017)

    Google Scholar 

  5. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  6. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  7. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13359–13368 (2021)

    Google Scholar 

  8. Chi, H.g., Ha, M.H., Chi, S., Lee, S.W., Huang, Q., Ramani, K.: Infogcn: representation learning for human skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20186–20196 (2022)

    Google Scholar 

  9. Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., Liu, J.: Human action recognition from various data modalities: a review. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  10. De Boissiere, A.M., Noumeir, R.: Infrared and 3d skeleton feature fusion for rgb-d action recognition. IEEE Access 8, 168297–168308 (2020)

    Article  Google Scholar 

  11. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  12. Hussein, M.E., Torki, M., Gowayyed, M.A., El-Saban, M.: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  13. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297. IEEE (2012)

    Google Scholar 

  14. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3d skeletons as points in a lie group. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014)

    Google Scholar 

  15. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  16. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)

    Google Scholar 

  17. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152 (2020)

    Google Scholar 

  18. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 183–192 (2020)

    Google Scholar 

  19. Song, Y.F., Zhang, Z., Shan, C., Wang, L.: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition. In: proceedings of the 28th ACM International Conference on Multimedia, pp. 1625–1633 (2020)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances In Neural Information Processing Systems 30 (2017)

    Google Scholar 

  21. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  22. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  23. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. Wang, Q., Peng, J., Shi, S., Liu, T., He, J., Weng, R.: Iip-transformer: intra-inter-part transformer for skeleton-based action recognition. arXiv preprint arXiv:2110.13385 (2021)

  25. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699 (2020)

  26. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  27. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  28. Wang, M., Xing, J., Liu, Y.: Actionclip: a new paradigm for video action recognition. arXiv preprint arXiv:2109.08472 (2021)

  29. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017). https://doi.org/10.1109/CVPR.2017.502

  30. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+ d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  31. Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional lstm network for skeleton-based action recognition. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)

    Google Scholar 

  32. Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J., Lu, H.: Decoupling GCN with DropGraph module for skeleton-based action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 536–553. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_32

    Chapter  Google Scholar 

  33. Plizzari, C., Cannici, M., Matteucci, M.: Skeleton-based action recognition via spatial and temporal transformer networks. Comput. Vis. Image Underst. 208, 103219 (2021)

    Article  Google Scholar 

  34. Li, S., Yi, J., Farha, Y.A., Gall, J.: Pose refinement graph convolutional network for skeleton-based action recognition. IEEE Robot. Autom. Lett. 6(2), 1028–1035 (2021)

    Article  Google Scholar 

  35. Hachiuma, R., Sato, F., Sekii, T.: Unified keypoint-based action recognition framework via structured keypoint pooling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22962–22971 (2023)

    Google Scholar 

  36. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1112–1121 (2020)

    Google Scholar 

  37. Chen, Z., Li, S., Yang, B., Li, Q., Liu, H.: Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1113–1122 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is being supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ22F020008, the National Key Research and Development Project of China under Grant No. 2020AAA0104001 and the “Pioneer” and “Leading Goose” R &D Program of Zhejiang under Grant No. 2022C01120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, L., Lou, W., Gao, F. (2024). Language Guided Graph Transformer for Skeleton Action Recognition. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics