Skip to main content

Multi-scale Feature Fusion Neural Network for Accurate Prediction of Drug-Target Interactions

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 353 Accesses

Abstract

Identification of drug-target interactions (DTI) is crucial in drug discovery and repositioning. However, identifying DTI is a costly and time-consuming process that involves conducting biological experiments with a vast array of potential compounds. To accelerate this process, computational methods have been developed, and with the growth of available datasets, deep learning methods have been widely applied in this field. Despite the emergence of numerous sequence-based deep learning models for DTI prediction, several limitations endure. These encompass inadequate feature extraction from protein targets using amino acid sequences, a deficiency in effective fusion mechanisms for drug and target features, and a prevalent inclination among many methods to solely treat DTI as a binary classification problem, thereby overlooking the crucial aspect of predicting binding affinity that signifies the strength of drug-target interactions. To address these concerns, we developed a multi-scale feature fusion neural network (MSF-DTI), which leverages the potential semantic information of amino acid sequences at multiple scales, enriches the feature representation of proteins, and fuses drug and target features using a designed feature fusion module for predicting drug-target interactions. According to experimental results, MSF-DTI outperforms other state-of-the-art methods in both DTI classification and binding affinity prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul, S.M., et al.: How to improve R &D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Disc. 9(3), 203–214 (2010)

    Article  Google Scholar 

  2. Chu, L.-H., Chen, B.-S.: Construction of cancer-perturbed protein–protein interaction network of apoptosis for drug target discovery. In: Choi, S. (ed.) Systems Biology for Signaling Networks. SB, pp. 589–610. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-5797-9_24

    Chapter  Google Scholar 

  3. Ricke, D.O., Wang, S., Cai, R., Cohen, D.: Genomic approaches to drug discovery. Curr. Opin. Chem. Biol. 10(4), 303–308 (2006)

    Article  Google Scholar 

  4. Bakheet, T.M., Doig, A.J.: Properties and identification of human protein drug targets. Bioinformatics 25(4), 451–457 (2009)

    Article  Google Scholar 

  5. Xie, L., Xie, L., Kinnings, S.L., Bourne, P.E.: Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol. 52, 361–379 (2012)

    Article  Google Scholar 

  6. Śledź, P., Caflisch, A.: Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol. 48, 93–102 (2018)

    Article  Google Scholar 

  7. Gschwend, D.A., Good, A.C., Kuntz, I.D.: Molecular docking towards drug discovery. J. Mol. Recogn. Interdiscipl. J. 9(2), 175–186 (1996)

    Article  Google Scholar 

  8. Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Article  Google Scholar 

  9. Durrant, J.D., McCammon, J.A.: Nnscore 2.0: a neural-network receptor-ligand scoring function. J. Chem. Inf. Model. 51(11), 2897–2903 (2011)

    Article  Google Scholar 

  10. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief. Bioinform. 15(5), 734–747 (2014)

    Article  Google Scholar 

  11. Wan, F., Hong, L., Xiao, A., Jiang, T., Zeng, J.: Neodti: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics 35(1), 104–111 (2019)

    Article  Google Scholar 

  12. Yuvaraj, N., Srihari, K., Chandragandhi, S., Raja, R.A., Dhiman, G., Kaur, A.: Analysis of protein-ligand interactions of sars-cov-2 against selective drug using deep neural networks. Big Data Min. Anal. 4(2), 76–83 (2021)

    Article  Google Scholar 

  13. Madhukar, N.S., et al.: A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun. 10(1), 5221 (2019)

    Article  Google Scholar 

  14. Piazza, I., et al.: A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11(1), 4200 (2020)

    Article  Google Scholar 

  15. Pahikkala, T., et al.: Toward more realistic drug-target interaction predictions. Brief. Bioinform. 16(2), 325–337 (2015)

    Article  Google Scholar 

  16. Shar, P.A., et al.: Pred-binding: large-scale protein-ligand binding affinity prediction. J. Enzyme Inhib. Med. Chem. 31(6), 1443–1450 (2016)

    Article  Google Scholar 

  17. Gabel, J., Desaphy, J., Rognan, D.: Beware of machine learning-based scoring functions on the danger of developing black boxes. J. Chem. Inf. Model. 54(10), 2807–2815 (2014)

    Article  Google Scholar 

  18. He, T., Heidemeyer, M., Ban, F., Cherkasov, A., Ester, M.: Simboost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J. Cheminf. 9(1), 1–14 (2017)

    Article  Google Scholar 

  19. Nassif, A.B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using deep neural networks: a systematic review. IEEE Access 7, 19143–19165 (2019)

    Article  Google Scholar 

  20. Pak, M., Kim, S.: A review of deep learning in image recognition. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), pp. 1–3. IEEE (2017)

    Google Scholar 

  21. Öztürk, H., Özgür, A., Ozkirimli, E.: Deepdta: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  22. Wang, J., Wen, N., Wang, C., Zhao, L., Cheng, L.: Electra-dta: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding. J. Cheminform. 14(1), 1–14 (2022)

    Article  Google Scholar 

  23. Li, F., Zhang, Z., Guan, J., Zhou, S.: Effective drug-target interaction prediction with mutual interaction neural network. Bioinformatics 38(14), 3582–3589 (2022)

    Article  Google Scholar 

  24. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

    Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  26. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)

    Article  Google Scholar 

  27. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. 104(11), 4337–4341 (2007)

    Article  Google Scholar 

  28. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Liu, H., Sun, J., Guan, J., Zheng, J., Zhou, S.: Improving compound-protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015)

    Article  Google Scholar 

  31. Wishart, D.S., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucl. Acids Res. 36(suppl-1), D901–D906 (2008)

    Article  Google Scholar 

  32. Günther, S., et al.: Supertarget and matador: resources for exploring drug-target relationships. Nucl. Acids Res. 36(suppl-1), D919–D922 (2007)

    Article  Google Scholar 

  33. Kuhn, M., et al.: Stitch 4: integration of protein-chemical interactions with user data. Nucl. Acids Res. 42(D1), D401–D407 (2014)

    Article  Google Scholar 

  34. Karimi, M., Di, W., Wang, Z., Shen, Y.: Deepaffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

  35. Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  36. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033 (2013)

    Google Scholar 

  37. Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L., Zheng, J.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  Google Scholar 

  38. Liu, Y., Min, W., Miao, C., Zhao, P., Li, X.-L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)

    Article  Google Scholar 

  39. Huang, L., et al.: Coadti: multi-modal co-attention based framework for drug-target interaction annotation. Brief. Bioinform. 23(6), bbac446 (2022)

    Article  Google Scholar 

  40. Li, M., Zhangli, L., Yifan, W., Li, Y.: Bacpi: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction. Bioinformatics 38(7), 1995–2002 (2022)

    Article  Google Scholar 

  41. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  42. Huang, K., Fu, T., Glass, L.M., Zitnik, M., Xiao, C., Sun, J.: Deeppurpose: a deep learning library for drug-target interaction prediction. Bioinformatics 36(22–23), 5545–5547 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Bai, B., Long, J., Wei, P., Li, J. (2024). Multi-scale Feature Fusion Neural Network for Accurate Prediction of Drug-Target Interactions. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics