Skip to main content

Smart Sensor-Based Point-Of-Care Diagnostics in Ophthalmology: The Potential for Theranocloud as Combination of Theragnostic and Cloud Computing

  • Chapter
  • First Online:
Wearable Biosensing in Medicine and Healthcare

Abstract

Recent advances in high-speed network connections, cloud infrastructure, low-cost processing hardware, hardware miniaturization, and powerful learning algorithms like deep learning have revolutionized the healthcare system. These breakthroughs have led to the creation of point-of-care and wearable devices that can reach patients in their homes, enabled by miniaturization and flexible electronics. Moreover, inexpensive cloud connections facilitate the swift transmission of home test results to physicians, and abundant storage servers ensure an encrypted comprehensive anonymous history of the patient's treatment. AI algorithms offer predictive insights and decision-making support for practitioners, exemplified by the recent FDA approved AI software solution for diagnosing diabetic retinopathy in ophthalmology. This chapter explores various smart point-of-care AI algorithms being investigated for the early detection of ophthalmological diseases. The Theranocloud is a futuristic concept for a comprehensive healthcare solution that integrates Therapy, Diagnostics, and Cloud infrastructure to provide affordable and accessible therapy and diagnostic services for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frangos, S., Buscombe, J.R.: Why should we be concerned about a “g”? Eur. J. Nucl. Med. Mol. Imaging 46, 519–519 (2019). https://doi.org/10.1007/s00259-018-4204-z

    Article  Google Scholar 

  2. Pene, F., Courtine, E., Cariou, A., Mira, J.-P.: Toward theragnostics. Crit. Care Med. 37, S50-58 (2009). https://doi.org/10.1097/CCM.0b013e3181921349

    Article  CAS  Google Scholar 

  3. Ehrhardt, J.D., Güleç, S.: A review of the history of radioactive iodine theranostics: the origin of nuclear ontology. Mol. Imaging Radionucl. Ther. 29, 88–97 (2020). https://doi.org/10.4274/mirt.galenos.2020.83703

    Article  Google Scholar 

  4. Jørgensen, J.T., Winther, H., Askaa, J., Andresen, L., Olsen, D., Mollerup, J.: A companion diagnostic with significant clinical impact in treatment of breast and gastric cancer. Front. Oncol. 11, 676939 (2021). https://doi.org/10.3389/fonc.2021.676939

    Article  CAS  Google Scholar 

  5. Velikyan, I., Wennborg, A., Frldwisch, J., Olofsson, H., Sandberg, D., Lubberink, M., Sandstrom, M., Lindman, H., Carlsson, J., Sorensen, J.: Theranostics at its best: clinical breast cancer imaging and quantification targeting HER2 receptors. Endocr. Abstr. 47, (2016). https://doi.org/10.1530/endoabs.47.OC48

  6. Chen, F., Ehlerding, E.B., Cai, W.: Theranostic nanoparticles. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 55, 1919–1922 (2014). https://doi.org/10.2967/jnumed.114.146019

    Article  CAS  Google Scholar 

  7. Gomes Marin, J.F., Nunes, R.F., Coutinho, A.M., Zaniboni, E.C., Costa, L.B., Barbosa, F.G., Queiroz, M.A., Cerri, G.G., Buchpiguel, C.A.: Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 40, 1715–1740 (2020). https://doi.org/10.1148/rg.2020200021

    Article  Google Scholar 

  8. DeNardo, G.L., DeNardo, S.J.: Concepts, consequences, and implications of theranosis. Semin. Nucl. Med. 42, 147–150 (2012). https://doi.org/10.1053/j.semnuclmed.2011.12.003

    Article  Google Scholar 

  9. Ahn, S., Woo, J.W., Lee, K., Park, S.Y.: HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J. Pathol. Transl. Med. 54, 34–44 (2020). https://doi.org/10.4132/jptm.2019.11.03

    Article  Google Scholar 

  10. Shi, Z., Lu, Y., Shen, S., Xu, Y., Shu, C., Wu, Y., Lv, J., Li, X., Yan, Z., An, Z., Dai, C., Su, L., Zhang, F., Liu, Q.: Wearable battery-free theranostic dental patch for wireless intraoral sensing and drug delivery. Npj Flex. Electron. 6, 1–11 (2022). https://doi.org/10.1038/s41528-022-00185-5

    Article  CAS  Google Scholar 

  11. Manikkath, J., Subramony, J.A.: Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 179, 113997 (2021). https://doi.org/10.1016/j.addr.2021.113997

    Article  CAS  Google Scholar 

  12. Zhang, Z., Zhang, R., Chang, C.-W., Guo, Y., Chi, Y.-W., Pan, T.: IWRAP: A theranostic wearable device with real-time vital monitoring and auto-adjustable compression level for venous thromboembolism. IEEE Trans. Biomed. Eng. 68, 2776–2786 (2021). https://doi.org/10.1109/TBME.2021.3054335

    Article  Google Scholar 

  13. Menachemi, N., Collum, T.H.: Benefits and drawbacks of electronic health record systems. Risk Manag. Healthc. Policy. 4, 47–55 (2011). https://doi.org/10.2147/RMHP.S12985

    Article  Google Scholar 

  14. Huang, J.-D., Wang, J., Ramsey, E., Leavey, G., Chico, T.J.A., Condell, J.: Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: a review. Sensors. 22, 8002 (2022). https://doi.org/10.3390/s22208002

    Article  Google Scholar 

  15. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., Wang, Y.: Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2, 230–243 (2017). https://doi.org/10.1136/svn-2017-000101

    Article  Google Scholar 

  16. Sarker, I.H.: AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. Sn Comput. Sci. 3, 158 (2022). https://doi.org/10.1007/s42979-022-01043-x

    Article  Google Scholar 

  17. Yang, S., Zhu, F., Ling, X., Liu, Q., Zhao, P.: Intelligent health care: applications of deep learning in computational medicine. Front. Genet. 12, (2021)

    Google Scholar 

  18. Nuzzi, R., Boscia, G., Marolo, P., Ricardi, F.: The impact of artificial intelligence and deep learning in eye diseases: a review. Front. Med. 8, 710329 (2021). https://doi.org/10.3389/fmed.2021.710329

    Article  Google Scholar 

  19. Du, A.X., Emam, S., Gniadecki, R.: Review of machine learning in predicting dermatological outcomes. Front. Med. 7, (2020)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  CAS  Google Scholar 

  21. Mayro, E.L., Wang, M., Elze, T., Pasquale, L.R.: The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye 34, 1–11 (2020). https://doi.org/10.1038/s41433-019-0577-x

    Article  Google Scholar 

  22. Hinton, G.E., Osindero, S., Teh, Y.-W.: A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 18, 1527–1554 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  Google Scholar 

  23. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2, 420 (2021). https://doi.org/10.1007/s42979-021-00815-1

    Article  Google Scholar 

  24. Murdoch, T.B., Detsky, A.S.: The inevitable application of big data to health care. JAMA 309, 1351–1352 (2013). https://doi.org/10.1001/jama.2013.393

    Article  CAS  Google Scholar 

  25. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395–405 (2012). https://doi.org/10.1038/nrg3208

    Article  CAS  Google Scholar 

  26. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  CAS  Google Scholar 

  27. Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6, 94–98 (2019). https://doi.org/10.7861/futurehosp.6-2-94

    Article  Google Scholar 

  28. Tham, Y.-C., Anees, A., Zhang, L., Goh, J.H.L., Rim, T.H., Nusinovici, S., Hamzah, H., Chee, M.-L., Tjio, G., Li, S., Xu, X., Goh, R., Tang, F., Cheung, C.Y.-L., Wang, Y.X., Nangia, V., Jonas, J.B., Gopinath, B., Mitchell, P., Husain, R., Lamoureux, E., Sabanayagam, C., Wang, J.J., Aung, T., Liu, Y., Wong, T.Y., Cheng, C.-Y.: Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study. Lancet Digit. Health. 3, e29–e40 (2021). https://doi.org/10.1016/S2589-7500(20)30271-5

    Article  CAS  Google Scholar 

  29. Benjamens, S., Dhunnoo, P., Meskó, B.: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit. Med. 3, 118 (2020). https://doi.org/10.1038/s41746-020-00324-0

    Article  Google Scholar 

  30. Retson, T.A., Besser, A.H., Sall, S., Golden, D., Hsiao, A.: Machine learning and deep neural networks in thoracic and cardiovascular imaging. J. Thorac. Imaging 34, 192–201 (2019). https://doi.org/10.1097/RTI.0000000000000385

    Article  Google Scholar 

  31. Babel, A., Taneja, R., Mondello Malvestiti, F., Monaco, A., Donde, S.: Artificial Intelligence Solutions to Increase Medication Adherence in Patients With Non-communicable Diseases. Front. Digit. Health. 3, 669869 (2021). https://doi.org/10.3389/fdgth.2021.669869

    Article  Google Scholar 

  32. Labovitz, D.L., Shafner, L., Reyes Gil, M., Virmani, D., Hanina, A.: Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke 48, 1416–1419 (2017). https://doi.org/10.1161/STROKEAHA.116.016281

    Article  Google Scholar 

  33. Lehne, M., Sass, J., Essenwanger, A., Schepers, J., Thun, S.: Why digital medicine depends on interoperability. Npj Digit. Med. 2, 1–5 (2019). https://doi.org/10.1038/s41746-019-0158-1

    Article  Google Scholar 

  34. Kelly, J.T., Campbell, K.L., Gong, E., Scuffham, P.: The internet of things: impact and implications for health care delivery. J. Med. Internet Res. 22, e20135 (2020). https://doi.org/10.2196/20135

    Article  Google Scholar 

  35. Murdoch, B.: Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med. Ethics 22, 122 (2021). https://doi.org/10.1186/s12910-021-00687-3

    Article  Google Scholar 

  36. Na, L., Yang, C., Lo, C.-C., Zhao, F., Fukuoka, Y., Aswani, A.: Feasibility of re identifying individuals in large national physical activity data sets from which protected health information has been removed with use of machine learning. JAMA Netw. Open 1, e186040 (2018). https://doi.org/10.1001/jamanetworkopen.2018.6040

    Article  Google Scholar 

  37. Papadakis, G.Z., Karantanas, A.H., Tsiknakis, M., Tsatsakis, A., Spandidos, D.A., Marias, K.: Deep learning opens new horizons in personalized medicine. Biomed. Rep. 10, 215–217 (2019). https://doi.org/10.3892/br.2019.1199

    Article  Google Scholar 

  38. Morley, J., Machado, C.C.V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., Floridi, L.: The ethics of AI in health care: A mapping review. Soc. Sci. Med. 1982. 260, 113172 (2020). https://doi.org/10.1016/j.socscimed.2020.113172

  39. Health, C. for D. and R.: Artificial intelligence and machine learning in software as a medical device. FDA. (2022)

    Google Scholar 

  40. Esmaeilzadeh, P.: Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC Med. Inform. Decis. Mak. 20, 170 (2020). https://doi.org/10.1186/s12911-020-01191-1

    Article  Google Scholar 

  41. Gagnon, M.-P., Ngangue, P., Payne-Gagnon, J., Desmartis, M.: M-Health adoption by healthcare professionals: a systematic review. J. Am. Med. Inform. Assoc. 23, 212–220 (2016). https://doi.org/10.1093/jamia/ocv052

    Article  Google Scholar 

  42. Enoch, J., McDonald, L., Jones, L., Jones, P.R., Crabb, D.P.: Evaluating whether sight is the most valued sense. JAMA Ophthalmol. 137, 1317–1320 (2019). https://doi.org/10.1001/jamaophthalmol.2019.3537

    Article  Google Scholar 

  43. Langelaan, M., de Boer, M.R., van Nispen, R.M.A., Wouters, B., Moll, A.C., van Rens, G.H.M.B.: Impact of visual impairment on quality of life: a comparison with quality of life in the general population and with other chronic conditions. Ophthalmic Epidemiol. 14, 119–126 (2007). https://doi.org/10.1080/09286580601139212

    Article  Google Scholar 

  44. Chakravarthy, U., Biundo, E., Saka, R.O., Fasser, C., Bourne, R., Little, J.-A.: The economic impact of blindness in Europe. Ophthalmic Epidemiol. 24, 239–247 (2017). https://doi.org/10.1080/09286586.2017.1281426

    Article  Google Scholar 

  45. Huang, D., Chen, Y.-S., Rupenthal, I.D.: Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev. 126, 96–112 (2018). https://doi.org/10.1016/j.addr.2017.09.008

    Article  CAS  Google Scholar 

  46. A brief overview of ocular anatomy and physiology. http://benthamscience.com/chapter/5273

  47. Kolb, H.: How the Retina Works: Much of the construction of an image takes place in the retina itself through the use of specialized neural circuits. Am. Sci. 91, 28–35 (2003)

    Article  Google Scholar 

  48. Common Eye Disorders and Diseases|CDC. https://www.cdc.gov/visionhealth/basics/ced/index.html

  49. Bourne, R.R.A., Flaxman, S.R., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Resnikoff, S., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Vision loss expert group: magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob. Health 5, e888–e897 (2017). https://doi.org/10.1016/S2214-109X(17)30293-0

    Article  Google Scholar 

  50. GBD 2019 blindness and vision impairment collaborators, vision loss expert group of the global burden of disease study: causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob. Health. 9, e144–e160 (2021). https://doi.org/10.1016/S2214-109X(20)30489-7

  51. Nickells, R.W., Howell, G.R., Soto, I., John, S.W.M.: Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu. Rev. Neurosci. 35, 153–179 (2012). https://doi.org/10.1146/annurev.neuro.051508.135728

    Article  CAS  Google Scholar 

  52. Weinreb, R.N., Aung, T., Medeiros, F.A.: The pathophysiology and treatment of glaucoma. JAMA 311, 1901–1911 (2014). https://doi.org/10.1001/jama.2014.3192

    Article  CAS  Google Scholar 

  53. Medeiros, F.A., Zangwill, L.M., Bowd, C., Weinreb, R.N.: Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch. Ophthalmol. Chic. Ill 1960(122), 827–837 (2004). https://doi.org/10.1001/archopht.122.6.827

    Article  Google Scholar 

  54. Hoffmann, E.M., Zangwill, L.M., Crowston, J.G., Weinreb, R.N.: Optic disk size and glaucoma. Surv. Ophthalmol. 52, 32–49 (2007). https://doi.org/10.1016/j.survophthal.2006.10.002

    Article  Google Scholar 

  55. Shin, Y., Cho, H., Jeong, H.C., Seong, M., Choi, J.-W., Lee, W.J.: Deep learning-based diagnosis of glaucoma using wide-field optical coherence tomography images. J. Glaucoma 30, 803–812 (2021). https://doi.org/10.1097/IJG.0000000000001885

    Article  Google Scholar 

  56. Akter, N., Fletcher, J., Perry, S., Simunovic, M.P., Briggs, N., Roy, M.: Glaucoma diagnosis using multi-feature analysis and a deep learning technique. Sci. Rep. 12, 8064 (2022). https://doi.org/10.1038/s41598-022-12147-y

    Article  CAS  Google Scholar 

  57. An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., Kikawa, T., Yokota, H., Akiba, M., Nakazawa, T.: Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J. Healthc. Eng. 2019, 4061313 (2019). https://doi.org/10.1155/2019/4061313

    Article  Google Scholar 

  58. Li, F., Wang, Z., Qu, G., Song, D., Yuan, Y., Xu, Y., Gao, K., Luo, G., Xiao, Z., Lam, D.S.C., Zhong, H., Qiao, Y., Zhang, X.: Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med. Imaging 18, 35 (2018). https://doi.org/10.1186/s12880-018-0273-5

    Article  CAS  Google Scholar 

  59. Heijl, A., Leske, M.C., Bengtsson, B., Hyman, L., Bengtsson, B., Hussein, M.: Early manifest glaucoma trial group: reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch. Ophthalmol. Chic. Ill 1960(120), 1268–1279 (2002). https://doi.org/10.1001/archopht.120.10.1268

    Article  Google Scholar 

  60. Sj, G., K, V., Mm, W., Kw, M., Jt, L., Pp, C., T, L., Sl, M.: Primary open-angle glaucoma preferred practice pattern®. Ophthalmol. 128, (2021). https://doi.org/10.1016/j.ophtha.2020.10.022

  61. Doucette, L.P., Walter, M.A.: Prostaglandins in the eye: Function, expression, and roles in glaucoma. Ophthalmic Genet. 38, 108–116 (2017). https://doi.org/10.3109/13816810.2016.1164193

    Article  CAS  Google Scholar 

  62. Brusini, P., Salvetat, M.L., Zeppieri, M.: How to measure intraocular pressure: an updated review of various tonometers. J. Clin. Med. 10, 3860 (2021). https://doi.org/10.3390/jcm10173860

    Article  Google Scholar 

  63. Barkana, Y., Anis, S., Liebmann, J., Tello, C., Ritch, R.: Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma. Arch. Ophthalmol. Chic. Ill 1960(124), 793–797 (2006). https://doi.org/10.1001/archopht.124.6.793

    Article  Google Scholar 

  64. Tojo, N., Abe, S., Ishida, M., Yagou, T., Hayashi, A.: The fluctuation of intraocular pressure measured by a contact lens sensor in normal-tension glaucoma patients and nonglaucoma subjects. J. Glaucoma 26, 195–200 (2017). https://doi.org/10.1097/IJG.0000000000000517

    Article  Google Scholar 

  65. Liu, J., De Francesco, T., Schlenker, M., Ahmed, I.I.: Icare home tonometer: a review of characteristics and clinical utility. Clin. Ophthalmol. Auckl. NZ. 14, 4031–4045 (2020). https://doi.org/10.2147/OPTH.S284844

    Article  Google Scholar 

  66. Yang, C., Huang, X., Li, X., Yang, C., Zhang, T., Wu, Q., Liu, D., Lin, H., Chen, W., Hu, N., Xie, X.: Wearable and implantable intraocular pressure biosensors: recent progress and future prospects. Adv. Sci. 8, 2002971 (2021). https://doi.org/10.1002/advs.202002971

    Article  CAS  Google Scholar 

  67. Zhang, Y., Chen, Y., Man, T., Huang, D., Li, X., Zhu, H., Li, Z.: High resolution non-invasive intraocular pressure monitoring by use of graphene woven fabrics on contact lens. Microsyst. Nanoeng. 5, 39 (2019). https://doi.org/10.1038/s41378-019-0078-x

    Article  CAS  Google Scholar 

  68. Agaoglu, S., Diep, P., Martini, M., Kt, S., Baday, M., Araci, I.E.: Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring. Lab Chip 18, 3471–3483 (2018). https://doi.org/10.1039/c8lc00758f

    Article  CAS  Google Scholar 

  69. Araci, I.E., Agaoglu, S., Lee, J.Y., Rivas Yepes, L., Diep, P., Martini, M., Schmidt, A.: Flow stabilization in wearable microfluidic sensors enables noise suppression. Lab Chip 19, 3899–3908 (2019). https://doi.org/10.1039/c9lc00842j

    Article  CAS  Google Scholar 

  70. Maeng, B., Chang, H.-K., Park, J.: Photonic crystal-based smart contact lens for continuous intraocular pressure monitoring. Lab Chip 20, 1740–1750 (2020). https://doi.org/10.1039/c9lc01268k

    Article  CAS  Google Scholar 

  71. Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A., Renaud, P.: First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest. Ophthalmol. Vis. Sci. 45, 3113–3117 (2004). https://doi.org/10.1167/iovs.04-0015

    Article  Google Scholar 

  72. Mansouri, K., Weinreb, R.N.: Meeting an unmet need in glaucoma: continuous 24-h monitoring of intraocular pressure. Expert Rev. Med. Devices 9, 225–231 (2012). https://doi.org/10.1586/erd.12.14

    Article  CAS  Google Scholar 

  73. Jones, L., Hui, A., Phan, C.-M., Read, M.L., Azar, D., Buch, J., Ciolino, J.B., Naroo, S.A., Pall, B., Romond, K., Sankaridurg, P., Schnider, C.M., Terry, L., Willcox, M.: BCLA CLEAR—Contact lens technologies of the future. Contact Lens Anterior Eye. 44, 398–430 (2021). https://doi.org/10.1016/j.clae.2021.02.007

    Article  Google Scholar 

  74. Dunbar, G.E., Shen, B.Y., Aref, A.A.: The Sensimed triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin. Ophthalmol. Auckl. NZ. 11, 875–882 (2017). https://doi.org/10.2147/OPTH.S109708

    Article  CAS  Google Scholar 

  75. Mansouri, K., Weinreb, R.N., Liu, J.H.K.: Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. PLoS ONE 10, e0125530 (2015). https://doi.org/10.1371/journal.pone.0125530

    Article  CAS  Google Scholar 

  76. Mansouri, K., Medeiros, F.A., Tafreshi, A., Weinreb, R.N.: Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch. Ophthalmol. Chic. Ill 1960(130), 1534–1539 (2012). https://doi.org/10.1001/jamaophthalmol.2013.1350

    Article  Google Scholar 

  77. Agnifili, L., Mastropasqua, R., Frezzotti, P., Fasanella, V., Motolese, I., Pedrotti, E., Di Iorio, A., Mattei, P.A., Motolese, E., Mastropasqua, L.: Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. (Copenh.) 93, e14-21 (2015). https://doi.org/10.1111/aos.12408

    Article  Google Scholar 

  78. Yang, Z., Mansouri, K., Moghimi, S., Weinreb, R.N.: Nocturnal variability of intraocular pressure monitored with contact lens sensor is associated with visual field loss in glaucoma. J. Glaucoma 30, e56 (2021). https://doi.org/10.1097/IJG.0000000000001727

    Article  Google Scholar 

  79. Mottet, B., Aptel, F., Romanet, J.-P., Hubanova, R., Pépin, J.-L., Chiquet, C.: 24-hour intraocular pressure rhythm in young healthy subjects evaluated with continuous monitoring using a contact lens sensor. JAMA Ophthalmol. 131, 1507–1516 (2013). https://doi.org/10.1001/jamaophthalmol.2013.5297

    Article  Google Scholar 

  80. Zhang, J., Kim, K., Kim, H.J., Meyer, D., Park, W., Lee, S.A., Dai, Y., Kim, B., Moon, H., Shah, J.V., Harris, K.E., Collar, B., Liu, K., Irazoqui, P., Lee, H., Park, S.A., Kollbaum, P.S., Boudouris, B.W., Lee, C.H.: Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nat. Commun. 13, 5518 (2022). https://doi.org/10.1038/s41467-022-33254-4

    Article  CAS  Google Scholar 

  81. Kim, T.Y., Mok, J.W., Hong, S.H., Jeong, S.H., Choi, H., Shin, S., Joo, C.-K., Hahn, S.K.: Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat. Commun. 13, 6801 (2022). https://doi.org/10.1038/s41467-022-34597-8

    Article  CAS  Google Scholar 

  82. Foot, B., MacEwen, C.: Surveillance of sight loss due to delay in ophthalmic treatment or review: frequency, cause and outcome. Eye Lond. Engl. 31, 771–775 (2017). https://doi.org/10.1038/eye.2017.1

    Article  CAS  Google Scholar 

  83. Prea, S.M., Vingrys, A.J., Kong, G.Y.X.: Test Reliability and Compliance to a Twelve-Month Visual Field Telemedicine Study in Glaucoma Patients. J. Clin. Med. 11, 4317 (2022). https://doi.org/10.3390/jcm11154317

    Article  Google Scholar 

  84. Jones, P.R., Campbell, P., Callaghan, T., Jones, L., Asfaw, D.S., Edgar, D.F., Crabb, D.P.: Glaucoma home monitoring using a tablet-based visual field test (Eyecatcher): an assessment of accuracy and adherence over 6 months. Am. J. Ophthalmol. 223, 42–52 (2021). https://doi.org/10.1016/j.ajo.2020.08.039

    Article  Google Scholar 

  85. Jones, P.R., Demaria, G., Tigchelaar, I., Asfaw, D.S., Edgar, D.F., Campbell, P., Callaghan, T., Crabb, D.P.: The human touch: using a webcam to autonomously monitor compliance during visual field assessments. Transl. Vis. Sci. Technol. 9, 31 (2020). https://doi.org/10.1167/tvst.9.8.31

    Article  Google Scholar 

  86. Matsumoto, C., Yamao, S., Nomoto, H., Takada, S., Okuyama, S., Kimura, S., Yamanaka, K., Aihara, M., Shimomura, Y.: Visual field testing with head-mounted perimeter “imo.” PLoS ONE 11, e0161974 (2016). https://doi.org/10.1371/journal.pone.0161974

    Article  CAS  Google Scholar 

  87. Alawa, K.A., Nolan, R.P., Han, E., Arboleda, A., Durkee, H., Sayed, M.S., Aguilar, M.C., Lee, R.K.: Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br. J. Ophthalmol. 105, 440–444 (2021). https://doi.org/10.1136/bjophthalmol-2019-314031

    Article  Google Scholar 

  88. Beykin, G., Norcia, A.M., Srinivasan, V.J., Dubra, A., Goldberg, J.L.: Discovery and clinical translation of novel glaucoma biomarkers. Prog. Retin. Eye Res. 80, 100875 (2021). https://doi.org/10.1016/j.preteyeres.2020.100875

    Article  Google Scholar 

  89. Beykin, G., Goldberg, J.L.: Molecular biomarkers for glaucoma. Curr. Ophthalmol. Rep. 7, 171–176 (2019). https://doi.org/10.1007/s40135-019-00213-0

    Article  Google Scholar 

  90. Nättinen, J., Aapola, U., Nukareddy, P., Uusitalo, H.: Clinical tear fluid proteomics-a novel tool in glaucoma research. Int. J. Mol. Sci. 23, 8136 (2022). https://doi.org/10.3390/ijms23158136

    Article  CAS  Google Scholar 

  91. Fernández-Vega Cueto, A., Álvarez, L., García, M., Álvarez-Barrios, A., Artime, E., Fernández-Vega Cueto, L., Coca-Prados, M., González-Iglesias, H.: Candidate glaucoma biomarkers: from proteins to metabolites, and the pitfalls to clinical applications. Biology. 10, 763 (2021). https://doi.org/10.3390/biology10080763

    Article  CAS  Google Scholar 

  92. Willcox, M.D.P., Argüeso, P., Georgiev, G.A., Holopainen, J.M., Laurie, G.W., Millar, T.J., Papas, E.B., Rolland, J.P., Schmidt, T.A., Stahl, U., Suarez, T., Subbaraman, L.N., Uçakhan, O.Ö., Jones, L.: TFOS DEWS II Tear Film Report. Ocul. Surf. 15, 366–403 (2017). https://doi.org/10.1016/j.jtos.2017.03.006

    Article  Google Scholar 

  93. Drucker, E., Krapfenbauer, K.: Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 4, 7 (2013). https://doi.org/10.1186/1878-5085-4-7

    Article  Google Scholar 

  94. Ferris, F.L., Wilkinson, C.P., Bird, A., Chakravarthy, U., Chew, E., Csaky, K., Sadda, S.R.: Clinical classification of age-related macular degeneration. Ophthalmology 120, 844–851 (2013). https://doi.org/10.1016/j.ophtha.2012.10.036

    Article  Google Scholar 

  95. Deng, Y., Qiao, L., Du, M., Qu, C., Wan, L., Li, J., Huang, L.: Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 9, 62–79 (2022). https://doi.org/10.1016/j.gendis.2021.02.009

    Article  CAS  Google Scholar 

  96. Blasiak, J., Sobczuk, P., Pawlowska, E., Kaarniranta, K.: Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res. Rev. 81, 101735 (2022). https://doi.org/10.1016/j.arr.2022.101735

    Article  CAS  Google Scholar 

  97. Heo, T.-Y., Kim, K.M., Min, H.K., Gu, S.M., Kim, J.H., Yun, J., Min, J.K.: Development of a deep-learning-based artificial intelligence tool for differential diagnosis between dry and neovascular age-related macular degeneration. Diagnostics. 10, 261 (2020). https://doi.org/10.3390/diagnostics10050261

    Article  Google Scholar 

  98. Burlina, P.M., Joshi, N., Pekala, M., Pacheco, K.D., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135, 1170–1176 (2017). https://doi.org/10.1001/jamaophthalmol.2017.3782

    Article  Google Scholar 

  99. Ting, D.S.W., Cheung, C.Y.-L., Lim, G., Tan, G.S.W., Quang, N.D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I.Y., Lee, S.Y., Wong, E.Y.M., Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N.C., Finkelstein, E.A., Lamoureux, E.L., Wong, I.Y., Bressler, N.M., Sivaprasad, S., Varma, R., Jonas, J.B., He, M.G., Cheng, C.-Y., Cheung, G.C.M., Aung, T., Hsu, W., Lee, M.L., Wong, T.Y.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 318, 2211–2223 (2017). https://doi.org/10.1001/jama.2017.18152

  100. Dong, L., Yang, Q., Zhang, R.H., Wei, W.B.: Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis. eClinical Medicine. 35, (2021). https://doi.org/10.1016/j.eclinm.2021.100875

  101. Hwang, D.-K., Hsu, C.-C., Chang, K.-J., Chao, D., Sun, C.-H., Jheng, Y.-C., Yarmishyn, A.A., Wu, J.-C., Tsai, C.-Y., Wang, M.-L., Peng, C.-H., Chien, K.-H., Kao, C.-L., Lin, T.-C., Woung, L.-C., Chen, S.-J., Chiou, S.-H.: Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics. 9, 232–245 (2019). https://doi.org/10.7150/thno.28447

    Article  Google Scholar 

  102. He, T., Zhou, Q., Zou, Y.: Automatic detection of age-related macular degeneration based on deep learning and local outlier factor algorithm. Diagn. Basel Switz. 12, 532 (2022). https://doi.org/10.3390/diagnostics12020532

    Article  CAS  Google Scholar 

  103. Yim, J., Chopra, R., Spitz, T., Winkens, J., Obika, A., Kelly, C., Askham, H., Lukic, M., Huemer, J., Fasler, K., Moraes, G., Meyer, C., Wilson, M., Dixon, J., Hughes, C., Rees, G., Khaw, P.T., Karthikesalingam, A., King, D., Hassabis, D., Suleyman, M., Back, T., Ledsam, J.R., Keane, P.A., De Fauw, J.: Predicting conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26, 892–899 (2020). https://doi.org/10.1038/s41591-020-0867-7

    Article  CAS  Google Scholar 

  104. Yan, Q., Weeks, D.E., Xin, H., Swaroop, A., Chew, E.Y., Huang, H., Ding, Y., Chen, W.: Deep-learning-based prediction of late age-related macular degeneration progression. Nat. Mach. Intell. 2, 141–150 (2020). https://doi.org/10.1038/s42256-020-0154-9

    Article  Google Scholar 

  105. Kaiser, S.M., Arepalli, S., Ehlers, J.P.: Current and future anti-vegf agents for neovascular age-related macular degeneration. J. Exp. Pharmacol. 13, 905–912 (2021). https://doi.org/10.2147/JEP.S259298

    Article  Google Scholar 

  106. Loewenstein, A., Laganovska, G., Bressler, N.M., Vanags, J., Alster, Y., De Juan, E., Stewart, J.M., Kardatzke, D., Singh, N., Erickson, S.: Phase 1 clinical study of the port delivery system with ranibizumab for continuous treatment of neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 61, 4201 (2020)

    Google Scholar 

  107. Chen, E.R., Kaiser, P.K.: Therapeutic potential of the ranibizumab port delivery system in the treatment of AMD: Evidence to date. Clin. Ophthalmol. Auckl. NZ. 14, 1349–1355 (2020). https://doi.org/10.2147/OPTH.S194234

    Article  CAS  Google Scholar 

  108. Cabral de Guimaraes, T.A., Daich Varela, M., Georgiou, M., Michaelides, M.: Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol. 106, 297–304 (2022). https://doi.org/10.1136/bjophthalmol-2020-318452

  109. Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U., Shaw, J.E.: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149 (2014). https://doi.org/10.1016/j.diabres.2013.11.002

    Article  CAS  Google Scholar 

  110. American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62–S69 (2010). https://doi.org/10.2337/dc10-S062

    Article  Google Scholar 

  111. Liu, R., Li, L., Shao, C., Cai, H., Wang, Z.: The impact of diabetes on vascular disease: progress from the perspective of epidemics and treatments. J. Diabetes Res. 2022, 1531289 (2022). https://doi.org/10.1155/2022/1531289

    Article  CAS  Google Scholar 

  112. Duh, E.J., Sun, J.K., Stitt, A.W.: Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2, e93751. https://doi.org/10.1172/jci.insight.93751

  113. Wang, W., Lo, A.C.Y.: Diabetic retinopathy: pathophysiology and treatments. Int. J. Mol. Sci. 19, 1816 (2018). https://doi.org/10.3390/ijms19061816

    Article  CAS  Google Scholar 

  114. Schoenfeld, E.R., Greene, J.M., Wu, S.Y., Leske, M.C.: Patterns of adherence to diabetes vision care guidelines: Baseline findings from the Diabetic Retinopathy Awareness Program. Ophthalmology 108, 563–571 (2001). https://doi.org/10.1016/S0161-6420(00)00600-X

    Article  CAS  Google Scholar 

  115. Wong, T.Y., Sun, J., Kawasaki, R., Ruamviboonsuk, P., Gupta, N., Lansingh, V.C., Maia, M., Mathenge, W., Moreker, S., Muqit, M.M.K., Resnikoff, S., Verdaguer, J., Zhao, P., Ferris, F., Aiello, L.P., Taylor, H.R.: Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 125, 1608–1622 (2018). https://doi.org/10.1016/j.ophtha.2018.04.007

    Article  Google Scholar 

  116. Lanzetta, P., Sarao, V., Scanlon, P.H., Barratt, J., Porta, M., Bandello, F., Loewenstein, A., Eldem, B., Hunyor, A., Joussen, A., Koh, A., Korobelnik, J.-F., Lanzetta, P., Loewenstein, A., Lövestam-Adrian, M., Navarro, R., Okada, A.A., Pearce, I., Rodríguez, F.J., Staurenghi, G., Wolf, S., Wong, D.T.: The Vision Academy: Fundamental principles of an effective diabetic retinopathy screening program. Acta Diabetol. 57, 785–798 (2020). https://doi.org/10.1007/s00592-020-01506-8

    Article  Google Scholar 

  117. Scanlon, P.H.: The English national screening programme for diabetic retinopathy 2003–2016. Acta Diabetol. 54, 515–525 (2017). https://doi.org/10.1007/s00592-017-0974-1

    Article  Google Scholar 

  118. van der Heijden, A.A., Abramoff, M.D., Verbraak, F., van Hecke, M.V., Liem, A., Nijpels, G.: Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol. (Copenh.) 96, 63–68 (2018). https://doi.org/10.1111/aos.13613

    Article  Google Scholar 

  119. Abràmoff, M.D., Lavin, P.T., Birch, M., Shah, N., Folk, J.C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit. Med. 1, 1–8 (2018). https://doi.org/10.1038/s41746-018-0040-6

    Article  Google Scholar 

  120. Rajalakshmi, R., Arulmalar, S., Usha, M., Prathiba, V., Kareemuddin, K.S., Anjana, R.M., Mohan, V.: Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS ONE 10, e0138285 (2015). https://doi.org/10.1371/journal.pone.0138285

    Article  CAS  Google Scholar 

  121. Rajalakshmi, R., Subashini, R., Anjana, R.M., Mohan, V.: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 32, 1138–1144 (2018). https://doi.org/10.1038/s41433-018-0064-9

    Article  Google Scholar 

  122. Ipp, E., Liljenquist, D., Bode, B., Shah, V.N., Silverstein, S., Regillo, C.D., Lim, J.I., Sadda, S., Domalpally, A., Gray, G., Bhaskaranand, M., Ramachandra, C., Solanki, K.: EyeArt study group: pivotal evaluation of an artificial intelligence system for autonomous detection of referrable and vision-threatening diabetic retinopathy. JAMA Netw. Open 4, e2134254 (2021). https://doi.org/10.1001/jamanetworkopen.2021.34254

    Article  Google Scholar 

  123. Lim, J.I., Regillo, C.D., Sadda, S.R., Ipp, E., Bhaskaranand, M., Ramachandra, C., Solanki, K.: Artificial intelligence detection of diabetic retinopathy: subgroup comparison of the eyeart system with ophthalmologists’ dilated examinations. Ophthalmol. Sci. 3, (2023). https://doi.org/10.1016/j.xops.2022.100228

  124. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., Webster, D.R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  125. Ruamviboonsuk, P., Tiwari, R., Sayres, R., Nganthavee, V., Hemarat, K., Kongprayoon, A., Raman, R., Levinstein, B., Liu, Y., Schaekermann, M., Lee, R., Virmani, S., Widner, K., Chambers, J., Hersch, F., Peng, L., Webster, D.R.: Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit. Health. 4, e235–e244 (2022). https://doi.org/10.1016/S2589-7500(22)00017-6

    Article  CAS  Google Scholar 

  126. Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano, J.D., Ferris, F.L., III., Klein, R.: For the American diabetes association: retinopathy in diabetes. Diabetes Care 27, s84–s87 (2004). https://doi.org/10.2337/diacare.27.2007.S84

    Article  Google Scholar 

  127. Ansari, P., Tabasumma, N., Snigdha, N.N., Siam, N.H., Panduru, R.V.N.R.S., Azam, S., Hannan, J.M.A., Abdel-Wahab, Y.H.A.: Diabetic retinopathy: An overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology. 3, 159–175 (2022). https://doi.org/10.3390/diabetology3010011

  128. Everett, L.A., Paulus, Y.M.: Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 21, 35 (2021). https://doi.org/10.1007/s11892-021-01403-6

    Article  Google Scholar 

  129. Udaondo, P., Parravano, M., Vujosevic, S., Zur, D., Chakravarthy, U.: Update on current and future management for diabetic maculopathy. Ophthalmol. Ther. 11, 489–502 (2022). https://doi.org/10.1007/s40123-022-00460-8

    Article  Google Scholar 

  130. Allen, D., Vasavada, A.: Cataract and surgery for cataract. BMJ 333, 128–132 (2006)

    Article  Google Scholar 

  131. Foster, A.: Cataract and “Vision 2020-the right to sight” initiative. Br. J. Ophthalmol. 85, 635–637 (2001). https://doi.org/10.1136/bjo.85.6.635

    Article  CAS  Google Scholar 

  132. Abdulhussein, D., Abdul Hussein, M.: WHO Vision 2020: Have We Done It? Ophthalmic Epidemiol. 0, 1–9 (2022). https://doi.org/10.1080/09286586.2022.2127784

  133. Chylack, L.T., Wolfe, J.K., Singer, D.M., Leske, M.C., Bullimore, M.A., Bailey, I.L., Friend, J., McCarthy, D., Wu, S.Y.: The lens opacities classification system III. The longitudinal study of cataract study group. Arch. Ophthalmol. Chic. Ill 1960. 111, 831–836 (1993). https://doi.org/10.1001/archopht.1993.01090060119035

  134. Gao, X., Lin, S., Wong, T.Y.: Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans. Biomed. Eng. 62, 2693–2701 (2015). https://doi.org/10.1109/TBME.2015.2444389

    Article  Google Scholar 

  135. Wu, X., Huang, Y., Liu, Z., Lai, W., Long, E., Zhang, K., Jiang, J., Lin, D., Chen, K., Yu, T., Wu, D., Li, C., Chen, Y., Zou, M., Chen, C., Zhu, Y., Guo, C., Zhang, X., Wang, R., Yang, Y., Xiang, Y., Chen, L., Liu, C., Xiong, J., Ge, Z., Wang, D., Xu, G., Du, S., Xiao, C., Wu, J., Zhu, K., Nie, D., Xu, F., Lv, J., Chen, W., Liu, Y., Lin, H.: Universal artificial intelligence platform for collaborative management of cataracts. Br. J. Ophthalmol. 103, 1553–1560 (2019). https://doi.org/10.1136/bjophthalmol-2019-314729

    Article  Google Scholar 

  136. Zhang, H., Niu, K., Xiong, Y., Yang, W., He, Z., Song, H.: Automatic cataract grading methods based on deep learning. Comput. Methods Programs Biomed. 182, 104978 (2019). https://doi.org/10.1016/j.cmpb.2019.07.006

    Article  Google Scholar 

  137. Wu, X., Xu, D., Ma, T., Li, Z.H., Ye, Z., Wang, F., Gao, X.Y., Wang, B., Chen, Y.Z., Wang, Z.H., Chen, J.L., Hu, Y.T., Ge, Z.Y., Wang, D.J., Zeng, Q.: Artificial intelligence model for anti interference cataract automatic diagnosis: a diagnostic accuracy study. Front. Cell Dev. Biol. 10, 906042 (2022). https://doi.org/10.3389/fcell.2022.906042

    Article  Google Scholar 

  138. Tognetto, D., Giglio, R., Vinciguerra, A.L., Milan, S., Rejdak, R., Rejdak, M., Zaluska-Ogryzek, K., Zweifel, S., Toro, M.D.: Artificial intelligence applications and cataract management: A systematic review. Surv. Ophthalmol. 67, 817–829 (2022). https://doi.org/10.1016/j.survophthal.2021.09.004

    Article  Google Scholar 

  139. Lahham, S., Shniter, I., Thompson, M., Le, D., Chadha, T., Mailhot, T., Kang, T.L., Chiem, A., Tseeng, S., Fox, J.C.: Point-of-care ultrasonography in the diagnosis of retinal detachment, vitreous hemorrhage, and vitreous detachment in the emergency department. JAMA Netw. Open 2, e192162 (2019). https://doi.org/10.1001/jamanetworkopen.2019.2162

    Article  Google Scholar 

  140. Roque, P.J., Hatch, N., Barr, L., Wu, T.S.: Bedside ocular ultrasound. Crit. Care Clin. 30(227–241), v (2014). https://doi.org/10.1016/j.ccc.2013.10.007

    Article  Google Scholar 

  141. Lahham, S., Ali, Q., Palileo, B.M., Lee, C., Fox, J.C.: Role of point of care ultrasound in the diagnosis of retinal detachment in the emergency department. Open Access Emerg. Med. OAEM. 11, 265–270 (2019). https://doi.org/10.2147/OAEM.S219333

    Article  Google Scholar 

  142. Propst, S.L., Kirschner, J.M., Strachan, C.C., Roumpf, S.K., Menard, L.M., Sarmiento, E.J., Hunter, B.R.: Ocular point-of-care ultrasonography to diagnose posterior chamber abnormalities: a systematic review and meta-analysis. JAMA Netw. Open 3, e1921460 (2020). https://doi.org/10.1001/jamanetworkopen.2019.21460

    Article  Google Scholar 

  143. Dornhofer, K., Alkhattabi, M., Lahham, S.: Point-of-care ultrasound detection of cataract in a patient with vision loss: a case report. Clin. Pract. Cases Emerg. Med. 4, 355–357 (2020). https://doi.org/10.5811/cpcem.2020.4.46597

    Article  Google Scholar 

  144. Shokoohi, H., LeSaux, M.A., Roohani, Y.H., Liteplo, A., Huang, C., Blaivas, M.: Enhanced point-of-care ultrasound applications by integrating automated feature-learning systems using deep learning. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 38, 1887–1897 (2019). https://doi.org/10.1002/jum.14860

  145. Vilela, M.A., Valença, F.M., Barreto, P.K., Amaral, C.E., Pellanda, L.C.: Agreement between retinal images obtained via smartphones and images obtained with retinal cameras or fundoscopic exams—systematic review and meta-analysis. Clin. Ophthalmol. Auckl. NZ. 12, 2581–2589 (2018). https://doi.org/10.2147/OPTH.S182022

    Article  Google Scholar 

  146. Bron, A.J., de Paiva, C.S., Chauhan, S.K., Bonini, S., Gabison, E.E., Jain, S., Knop, E., Markoulli, M., Ogawa, Y., Perez, V., Uchino, Y., Yokoi, N., Zoukhri, D., Sullivan, D.A.: TFOS DEWS II pathophysiology report. Ocul. Surf. 15, 438–510 (2017). https://doi.org/10.1016/j.jtos.2017.05.011

    Article  Google Scholar 

  147. Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C.-K., Liu, Z., Nelson, J.D., Nichols, J.J., Tsubota, K., Stapleton, F.: TFOS DEWS II definition and classification report. Ocul. Surf. 15, 276–283 (2017). https://doi.org/10.1016/j.jtos.2017.05.008

    Article  Google Scholar 

  148. Schechter, B., Mah, F.: Optimization of the ocular surface through treatment of ocular surface disease before ophthalmic surgery: a narrative review. Ophthalmol. Ther. 11, 1001–1015 (2022). https://doi.org/10.1007/s40123-022-00505-y

    Article  Google Scholar 

  149. Jones, L., Downie, L.E., Korb, D., Benitez-del-Castillo, J.M., Dana, R., Deng, S.X., Dong, P.N., Geerling, G., Hida, R.Y., Liu, Y., Seo, K.Y., Tauber, J., Wakamatsu, T.H., Xu, J., Wolffsohn, J.S., Craig, J.P.: TFOS DEWS II management and therapy report. Ocul. Surf. 15, 575–628 (2017). https://doi.org/10.1016/j.jtos.2017.05.006

    Article  Google Scholar 

  150. Ting, D.S.J., Ho, C.S., Deshmukh, R., Said, D.G., Dua, H.S.: Infectious keratitis: an update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye 35, 1084–1101 (2021). https://doi.org/10.1038/s41433-020-01339-3

    Article  Google Scholar 

  151. Flaxman, S.R., Bourne, R.R.A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Vision loss expert group of the global burden of disease study: global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221–e1234 (2017). https://doi.org/10.1016/S2214-109X(17)30393-5

    Article  Google Scholar 

  152. Austin, A., Lietman, T., Rose-Nussbaumer, J.: Update on the management of infectious keratitis. Ophthalmology 124, 1678–1689 (2017). https://doi.org/10.1016/j.ophtha.2017.05.012

    Article  Google Scholar 

  153. Schmidl, D., Schlatter, A., Chua, J., Tan, B., Garhöfer, G., Schmetterer, L.: Novel approaches for imaging-based diagnosis of ocular surface disease. Diagnostics. 10, 589 (2020). https://doi.org/10.3390/diagnostics10080589

    Article  Google Scholar 

  154. Han, S.B., Liu, Y.-C., Noriega, K.M., Mehta, J.S.: Applications of anterior segment optical coherence tomography in cornea and ocular surface diseases. J. Ophthalmol. 2016, 4971572 (2016). https://doi.org/10.1155/2016/4971572

    Article  Google Scholar 

  155. Di Cello, L., Pellegrini, M., Vagge, A., Borselli, M., Ferro Desideri, L., Scorcia, V., Traverso, C.E., Giannaccare, G.: Advances in the noninvasive diagnosis of dry eye disease. Appl. Sci. 11, 10384 (2021). https://doi.org/10.3390/app112110384

    Article  CAS  Google Scholar 

  156. Fineide, F., Arita, R., Utheim, T.P.: The role of meibography in ocular surface diagnostics: A review. Ocul. Surf. 19, 133–144 (2021). https://doi.org/10.1016/j.jtos.2020.05.004

    Article  Google Scholar 

  157. Craig, J.P., Singh, I., Tomlinson, A., Morgan, P.B., Efron, N.: The role of tear physiology in ocular surface temperature. Eye Lond. Engl. 14(Pt 4), 635–641 (2000). https://doi.org/10.1038/eye.2000.156

    Article  Google Scholar 

  158. Chase, C., Elsawy, A., Eleiwa, T., Ozcan, E., Tolba, M., Abou Shousha, M.: Comparison of autonomous AS-OCT deep learning algorithm and clinical dry eye tests in diagnosis of dry eye disease. Clin. Ophthalmol. Auckl. NZ. 15, 4281–4289 (2021). https://doi.org/10.2147/OPTH.S321764

    Article  Google Scholar 

  159. da Cruz, L.B., Souza, J.C., de Sousa, J.A., Santos, A.M., de Paiva, A.C., de Almeida, J.D.S., Silva, A.C., Junior, G.B., Gattass, M.: Interferometer eye image classification for dry eye categorization using phylogenetic diversity indexes for texture analysis. Comput. Methods Programs Biomed. 188, 105269 (2020). https://doi.org/10.1016/j.cmpb.2019.105269

    Article  Google Scholar 

  160. Wang, J., Yeh, T.N., Chakraborty, R., Yu, S.X., Lin, M.C.: A Deep Learning Approach for Meibomian Gland Atrophy Evaluation in Meibography Images. Transl. Vis. Sci. Technol. 8, 37 (2019). https://doi.org/10.1167/tvst.8.6.37

    Article  Google Scholar 

  161. Wang, J., Li, S., Yeh, T.N., Chakraborty, R., Graham, A.D., Yu, S.X., Lin, M.C.: Quantifying meibomian gland morphology using artificial intelligence. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 98, 1094–1103 (2021). https://doi.org/10.1097/OPX.0000000000001767

    Article  Google Scholar 

  162. Yu, Y., Zhou, Y., Tian, M., Zhou, Y., Tan, Y., Wu, L., Zheng, H., Yang, Y.: Automatic identification of meibomian gland dysfunction with meibography images using deep learning. Int. Ophthalmol. 42, 3275–3284 (2022). https://doi.org/10.1007/s10792-022-02262-0

    Article  Google Scholar 

  163. Saha, R.K., Chowdhury, A.M.M., Na, K.-S., Hwang, G.D., Eom, Y., Kim, J., Jeon, H.-G., Hwang, H.S., Chung, E.: Automated quantification of meibomian gland dropout in infrared meibography using deep learning. Ocul. Surf. 26, 283–294 (2022). https://doi.org/10.1016/j.jtos.2022.06.006

    Article  Google Scholar 

  164. Zheng, Q., Wang, L., Wen, H., Ren, Y., Huang, S., Bai, F., Li, N., Craig, J.P., Tong, L., Chen, W.: Impact of incomplete blinking analyzed using a deep learning model with the keratograph 5M in dry eye disease. Transl. Vis. Sci. Technol. 11, 38 (2022). https://doi.org/10.1167/tvst.11.3.38

    Article  Google Scholar 

  165. Li, Z., Jiang, J., Chen, K., Chen, Q., Zheng, Q., Liu, X., Weng, H., Wu, S., Chen, W.: Preventing corneal blindness caused by keratitis using artificial intelligence. Nat. Commun. 12, 3738 (2021). https://doi.org/10.1038/s41467-021-24116-6

    Article  CAS  Google Scholar 

  166. Hung, N., Shih, A.K.-Y., Lin, C., Kuo, M.-T., Hwang, Y.-S., Wu, W.-C., Kuo, C.-F., Kang, E.Y.-C., Hsiao, C.-H.: Using slit-lamp images for deep learning-based identification of bacterial and fungal keratitis: model development and validation with different convolutional neural networks. Diagnostics. 11, 1246 (2021). https://doi.org/10.3390/diagnostics11071246

    Article  Google Scholar 

  167. Ghosh, A.K., Thammasudjarit, R., Jongkhajornpong, P., Attia, J., Thakkinstian, A.: Deep learning for discrimination between fungal keratitis and bacterial keratitis: deepkeratitis. Cornea 41, 616–622 (2022). https://doi.org/10.1097/ICO.0000000000002830

    Article  Google Scholar 

  168. Tamhane, M., Cabrera-Ghayouri, S., Abelian, G., Viswanath, V.: Review of biomarkers in ocular matrices: challenges and opportunities. Pharm. Res. 36, 40 (2019). https://doi.org/10.1007/s11095-019-2569-8

    Article  CAS  Google Scholar 

  169. Messmer, E.M., von Lindenfels, V., Garbe, A., Kampik, A.: Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology 123, 2300–2308 (2016). https://doi.org/10.1016/j.ophtha.2016.07.028

    Article  Google Scholar 

  170. Chotikavanich, S., de Paiva, C.S., Li, D.Q., Chen, J.J., Bian, F., Farley, W.J., Pflugfelder, S.C.: Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest. Ophthalmol. Vis. Sci. 50, 3203–3209 (2009). https://doi.org/10.1167/iovs.08-2476

    Article  Google Scholar 

  171. Lanza, N.L., Valenzuela, F., Perez, V.L., Galor, A.: The matrix metalloproteinase 9 point-of-care test in dry eye. Ocul. Surf. 14, 189–195 (2016). https://doi.org/10.1016/j.jtos.2015.10.004

    Article  Google Scholar 

  172. Hagan, S., Martin, E., Enríquez-de-Salamanca, A.: Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 7, 15 (2016). https://doi.org/10.1186/s13167-016-0065-3

    Article  Google Scholar 

  173. Enríquez-de-Salamanca, A., Calonge, M.: Cytokines and chemokines in immune-based ocular surface inflammation. Expert Rev. Clin. Immunol. 4, 457–467 (2008). https://doi.org/10.1586/1744666X.4.4.457

    Article  CAS  Google Scholar 

  174. Zhang, S., Echegoyen, J.: Point of care diagnosis of dry eye disease with a sensitive immunoassay for dual biomarker detection. Biochem. Biophys. Rep. 32, 101396 (2022). https://doi.org/10.1016/j.bbrep.2022.101396

    Article  CAS  Google Scholar 

  175. Versura, P., Campos, E.C.: TearLab® Osmolarity System for diagnosing dry eye. Expert Rev. Mol. Diagn. 13, 119–129 (2013). https://doi.org/10.1586/erm.12.142

    Article  CAS  Google Scholar 

  176. Suzuki, M., Massingale, M.L., Ye, F., Godbold, J., Elfassy, T., Vallabhajosyula, M., Asbell, P.A.: Tear osmolarity as a biomarker for dry eye disease severity. Invest. Ophthalmol. Vis. Sci. 51, 4557–4561 (2010). https://doi.org/10.1167/iovs.09-4596

    Article  Google Scholar 

  177. Sullivan, B.D., Whitmer, D., Nichols, K.K., Tomlinson, A., Foulks, G.N., Geerling, G., Pepose, J.S., Kosheleff, V., Porreco, A., Lemp, M.A.: An objective approach to dry eye disease severity. Invest. Ophthalmol. Vis. Sci. 51, 6125–6130 (2010). https://doi.org/10.1167/iovs.10-5390

    Article  Google Scholar 

  178. Wolffsohn, J.S., Arita, R., Chalmers, R., Djalilian, A., Dogru, M., Dumbleton, K., Gupta, P.K., Karpecki, P., Lazreg, S., Pult, H., Sullivan, B.D., Tomlinson, A., Tong, L., Villani, E., Yoon, K.C., Jones, L., Craig, J.P.: TFOS DEWS II Diagnostic methodology report. Ocul. Surf. 15, 539–574 (2017). https://doi.org/10.1016/j.jtos.2017.05.001

    Article  Google Scholar 

  179. Abreau, K., Callan, C., Kottaiyan, R., Zhang, A., Yoon, G., Aquavella, J.V., Zavislan, J., Hindman, H.B.: Temperatures of the ocular surface, lid, and periorbital regions of Sjögren’s, evaporative, and aqueous-deficient dry eyes relative to normals. Ocul. Surf. 14, 64–73 (2016). https://doi.org/10.1016/j.jtos.2015.09.001

    Article  Google Scholar 

  180. Li, W., Graham, A.D., Selvin, S., Lin, M.C.: Ocular Surface Cooling Corresponds to Tear Film Thinning and Breakup. Optom. Vis. Sci. 92, e248 (2015). https://doi.org/10.1097/OPX.0000000000000672

    Article  Google Scholar 

  181. Wagner, S.K., Fu, D.J., Faes, L., Liu, X., Huemer, J., Khalid, H., Ferraz, D., Korot, E., Kelly, C., Balaskas, K., Denniston, A.K., Keane, P.A.: Insights into systemic disease through retinal imaging-based oculomics. Transl. Vis. Sci. Technol. 9, 6 (2020). https://doi.org/10.1167/tvst.9.2.6

    Article  Google Scholar 

  182. Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng, L., Webster, D.R.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018). https://doi.org/10.1038/s41551-018-0195-0

    Article  Google Scholar 

  183. Wu, J.-H., Liu, T.Y.A.: Application of deep learning to retinal-image-based oculomics for evaluation of systemic health: a review. J. Clin. Med. 12, 152 (2023). https://doi.org/10.3390/jcm12010152

    Article  Google Scholar 

  184. Cheung, C.Y., Mok, V., Foster, P.J., Trucco, E., Chen, C., Wong, T.Y.: Retinal imaging in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 92, 983–994 (2021). https://doi.org/10.1136/jnnp-2020-325347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Lamrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamrani, M., Moghadas, M., Kalia, Y.N., Santer, V. (2024). Smart Sensor-Based Point-Of-Care Diagnostics in Ophthalmology: The Potential for Theranocloud as Combination of Theragnostic and Cloud Computing. In: Mitsubayashi, K. (eds) Wearable Biosensing in Medicine and Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-8122-9_19

Download citation

Publish with us

Policies and ethics