Skip to main content

An Improved Target Searching and Imaging Method for CSAR

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 458 Accesses

Abstract

Circular Synthetic Aperture Radar (CSAR) has attracted much attention in the field of high-resolution SAR imaging. In order to shorten the computation time and improve the imaging effect, in this paper, we propose a fast CSAR imaging strategy that searches the target and automatically selects the area of interest for imaging. The first step is to find the target and select the imaging center and interest imaging area based on the target search algorithm, the second step is to divide the full-aperture data into sub-apertures according to the angle, the third step is to approximate the sub-apertures as linear arrays and imaging them separately, and the last step is to perform sub-image fusion to obtain the final CSAR image. This method can greatly reduce the imaging time and obtain well-focused CSAR images. The proposed algorithm is verified by both simulation and processing real data collected with our mmWave imager prototype utilizing commercially available 77-GHz MIMO radar sensors. Through the experimental results we verified the performance and the superiority of the our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knaell, K.K., Cardillo, G.P.: Radar tomography for the generation of three-dimensional images. IEE Proc. Radar Sonar Navig. 142(2), 54–60 (1995)

    Article  Google Scholar 

  2. Soumekh, M.: Reconnaissance with slant plane circular SAR imaging. IEEE Trans. Image Process. 5(8), 1252–1265 (1996)

    Article  Google Scholar 

  3. Chen, L., An, D., Huang, X.: A backprojection-based imaging for circular synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(8), 3547–3555 (2017)

    Article  Google Scholar 

  4. Ponce, O., Prats-Iraola, P., Pinheiro, M., et al.: Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band. IEEE Trans. Geosci. Remote Sens. 52(6), 3074–3090 (2013)

    Article  Google Scholar 

  5. Ponce, O., Prats-Iraola, P., Scheiber, R., et al.: First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band. IEEE Trans. Geosci. Remote Sens. 54(10), 6170–6196 (2016)

    Article  Google Scholar 

  6. Gianelli, C.D., Xu, L.: Focusing, imaging, and ATR for the Gotcha 2008 wide angle SAR collection. In: Algorithms for Synthetic Aperture Radar Imagery XX, vol. 8746, pp. 174–181. SPIE (2013). https://doi.org/10.1117/12.2015773

  7. Saville, M.A., Jackson, J.A., Fuller, D.F.: Rethinking vehicle classification with wide-angle polarimetric SAR. IEEE Aerosp. Electron. Syst. Mag. 29(1), 41–49 (2014)

    Article  Google Scholar 

  8. Frolind, P.O., Gustavsson, A., Lundberg, M., et al.: Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment. IEEE Trans. Geosci. Remote Sens. 50(4), 1329–1339 (2011)

    Article  Google Scholar 

  9. Cantalloube, H.M.J., Colin-Koeniguer, E., Oriot H.: High resolution SAR imaging along circular trajectories. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 850–853. IEEE (2007). https://doi.org/10.1109/IGARSS.2007.4422930

  10. Dupuis, X., Martineau, P.: Very high resolution circular SAR imaging at X band. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 930–933. IEEE (2014). https://doi.org/10.1109/IGARSS.2014.6946578

  11. Lin, Y., Hong, W., Tan, W., et al.: Extension of range migration algorithm to squint circular SAR imaging. IEEE Geosci. Remote Sens. Lett. 8(4), 651–655 (2011)

    Article  Google Scholar 

  12. Chen, L., An, D., Huang, X., et al.: P-band ultra wideband circular synthetic aperture radar experiment and imaging. In: 2016 CIE International Conference on Radar (RADAR), pp. 1–3. IEEE (2016). https://doi.org/10.1109/RADAR.2016.8059352

  13. Hao, J., Li, J., Pi, Y.: Three-dimensional imaging of terahertz circular SAR with sparse linear array. Sensors 18(8), 2477 (2018)

    Google Scholar 

  14. Ao, D., Wang, R., Hu, C., et al.: A sparse SAR imaging method based on multiple measurement vectors model. Remote Sens. 9(3), 297 (2017)

    Google Scholar 

  15. Liu, T., Pi, Y., Yang, X.: Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band. IEEE Trans. Terahertz Sci. Technol. 8(2), 165–173 (2017)

    Article  Google Scholar 

  16. Zheng, Y., Cui, X., Wu, G., et al.: Polarimetric CSAR image quality enhancement using joint sub-aperture processing. In: 2022 7th International Conference on Signal and Image Processing (ICSIP), pp. 458–462. IEEE (2022). https://doi.org/10.1109/ICSIP55141.2022.9886812

  17. Chu, L., Ma, Y., Yang, S., et al.: Imaging algorithm for circular SAR based on geometric constraints. In: 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp. 303–306. IEEE (2022). https://doi.org/10.1109/ICCNEA57056.2022.00073

  18. Lou, Y., Liu, W., Xing, M., et al.: A novel motion compensation method applicable to ground cartesian back-projection algorithm for airborne circular SAR. IEEE Trans. Geosci. Remote Sens. (2023). https://doi.org/10.1109/TGRS.2023.3276051

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61873213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiao Deng or Chuandong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y., Li, C., Shi, Y., Wang, H., Li, H. (2024). An Improved Target Searching and Imaging Method for CSAR. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics