Skip to main content

Eucalyptus Plantation Worldwide, Its Hybridization and Cloning Development

  • Chapter
  • First Online:
Eucalyptus

Abstract

According to the Global Forest Resources Assessment (FRA) report that was published by the Food and Agriculture Organization of the United Nations (FAO) in the year 2020, the total forest area across the globe is estimated to have amounted to 4.06 billion hectares (ha), which covers 31% of the total land area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad ZY (2020) Planting of Eucalyptus in Malaysia. Acta Sci Agric, 139–140

    Google Scholar 

  • Appanah S, Weinland G (1993a) Planting quality timber trees in Peninsular Malaysia-a review. Malayan Forest Record No. 2. Forest Research Institute Malaysia, Kepong, 221 pp

    Google Scholar 

  • Archer RR (1987) Growth stresses and strains in trees. Springer, Berlin, Heidelberg, p 240

    Book  Google Scholar 

  • Assis TF (2001) Evolution of technology for cloning Eucalyptus in large scale. In: Developing the Eucalyptus of the future. IUFRO international symposium, September 10–15, 2001, Valdivia, Chile, pp 1–16

    Google Scholar 

  • Aylward J, Roets F, Dreyer LL, Wingfield MJ (2019) Teratosphaeria stem canker of Eucalyptus: two pathogens, one devastating disease. Mol Plant Pathol 20(1):8–19

    Article  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472

    Article  CAS  Google Scholar 

  • Barber PA (2004) Asian network for scientific information forest. The threat of disease to plantation forests in Indonesia. Plant Pathol 3(2):97–104. ISSN 1680-8193

    Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust Syst Bot 13(1):79–148

    Google Scholar 

  • Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience 67:14–25

    Article  Google Scholar 

  • Campinhos E, Ikemori YK (1983) Introdução de novas técnicas na produção de mudas de essências florestais. Silvivultura 8(28):226–228

    Google Scholar 

  • Carvalho AM (2000) The valuation of Eucalyptus grandis x Eucalyptus urophylla hybrid wood through the production of small dimension sawn wood, pulpwood and fuelwood. Sci for 59:61–76

    Google Scholar 

  • Centre de Coopération Internationale en Recherche Agronomique pour le Développement, (CIRAD)/French Agricultural Research Centre for International Development (1992) Le CIRAD en 1992. Centre de coopération internationale en recherche agronomique pour le développement. Paris

    Google Scholar 

  • Dungey HS, Nikles DG (2000) An international survey of interspecific hybrids in forestry. In: Dungey HS, Dieters MJ, Nikles DG (eds) Hybrid breeding and genetics of forest trees. Proceedings of QFRI/CRC-SPF symposium, 9–14th April 2000 Noosa, Queensland, Australia. Department of Primary Industries, Brisbane, pp 419–425

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Enters T, Durst PB, Brown C (2002) What does it take? The role of incentives in forest plantation development in the Asia-Pacific region. ISBN 974-7946-62-9

    Google Scholar 

  • Farah A, Fechtal M, Chaouch A (2002). Effet de l’hybridation interspe´cifique sur la teneur et la composition chimique des huiles essentielles d’eucalyptus cultive´s au. Maroc. Biotechnologie, Agronomie, Société ET Environnement 6(3):163–169

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2020) Global forest resources assessment 2020: main report, FAO, Italy, 2020

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1979) Eucalyptus for planting. FAO forestry and forest products study No.11. pp 104, FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1995). Flavours and Fragrances of Plant Origin; Food and Agriculture Organization: Rome, Italy

    Google Scholar 

  • Foroughbakhch R, Carrillo-Parra A, Hernandez-Pinero JL, Guzman-Lucio MA (2017) Growth and yield of a eucalyptus subtropical plantation in a Northeastern Mexico degraded land soil. Madera y bosques 23(3):71–85

    Google Scholar 

  • Franca FJN, Suely T, Franca FA, Vidaurre GB (2020) Effect of growth stress and interlocked grainon splitting of seven different hybrid clones of Eucalyptus grandis × Eucalyptus urophylla wood. Holzforschung 74(10):917–926

    Article  Google Scholar 

  • Freezaillah CY, Sandrasegaran K, Singham SS (1966) Permanent sample plot information on stocking, growth and yield of Eucalyptus robusta. FRI Research Pamphlet No. 48. 38 pp

    Google Scholar 

  • Gibson S, Zulkifli N (1992) Current status of forest plantation development in Sabah. In: Proceeding of the national seminar on economic of forest plantation, 24–26 February 1992, Petaling Jaya, Malaysia, pp 15–22

    Google Scholar 

  • GIT Forestry Consulting’s Eucalyptologics: Information Resources on Eucalyptus Cultivation Worldwide (2008) http://www.git.forestry.com/. Accessed May 2021

  • Grossberg SP (2009) Forest management (Nova Science Publishers). JudulForest Management. ISBN:1612096972, 9781612096971. https://books.google.com.my/books?id=ZAiwnQAACAAJ

  • Harwood CE, Alloysius D, Pomroy P, Robson KW, Haines NW (1997) Early growth and survival of Eucalyptus pellita provenances in a range of tropical environments, compared with E. grandis, E. urophylla and Acacia mangium. New for 14:203–219

    Article  Google Scholar 

  • Hettasch MH, Lunt KA, Pierce BT, Snedden CL, Steyn DJ, Venter HM, Verryn SD (2005) Tree breeding course manual. Natural Resources and Environment, Pretoria; CSIR, Pretoria, 17-5

    Google Scholar 

  • Hillis WE, Brown AG (1983) Eucalyptus for wood production, 2nd edn. Melbourne, CSIRO

    Google Scholar 

  • Hung TD, Brawner JT, Meder R, Lee DJ, Southerton S, Thinh HH, Dieters MJ (2015) Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam. Ann For Sci 72(2):205–217

    Google Scholar 

  • Japarudin Y, Lapammu M, Alwi A, Warburton P, Macdonell P, Boden D, Brawner J, Brown M, Meder R (2020) Growth performance of selected taxa as candidate species for productive tree plantations in Borneo. Aust for 83(1):29–38. https://doi.org/10.1080/00049158.2020.1727181

    Article  Google Scholar 

  • Jiang XM, Ye KL, Lu JX, Zhao YK, Yin YF (2007) Guide on utilisation of eucalyptus and acacia plantations in china for solid wood products. The final technical report for: improved and diversified use of tropical plantation timbers in China to supplement diminishing supplies from natural forests “ITTO ProjectPD69/01 REV.2”. Science Press, Beijing, China, p 181

    Google Scholar 

  • Kendawang KK (1992) Current status of forest plantation development in Sarawak. In: Proceeding of the national seminar on economic of forest plantation, 24–26 February 1992, Petaling Jaya, Malaysia, pp 34

    Google Scholar 

  • Keane PJ, Kile GA, Podger FD, Brown BN (2000) Diseases and pathogens of eucalypts. https://doi.org/10.1071/9780643090125. ISBN (PDF): 978-0-643-09012-5. ISBN (ePub): 978-0-643-09884-8.2000

  • Kullan ARK, Dyk MM, Hefer CA, Jones N, Kanzler A, Myburg AA (2012) Genetic dissection of growth, wood ba-sic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E. urophylla. BMC Genet 13:e60

    Google Scholar 

  • Labate CA, Francisco de Assis T, Oda S, de Mello EJ, Mori ES, de Moraes MLT, Cid LPB, Gonzalez ER, Alfenas AC, Edival A, Zauza V, Foelkel, Moon DH, de Carvalho MCCG, Caldas DGG, Carneiro RT, de Andrade A, Salvatierra GR (2008) Eucalyptus: a compendium of transgenic crop plants: forest tree species, vol 9. Edited by Kole C, Timothy C, Hall TC. Wiley, New York, NY, USA,pp 35–99. ISBN 978-1-405-16923-3

    Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Article  Google Scholar 

  • Lee SS (2018) Observations on the successes and failures of acacia plantations in Sabah and Sarawak and the way forward. J Trop For Sci 30:468–475. https://doi.org/10.26525/jtfs2018.30.5.468475

  • Lee SH, Lum WC, Antov P, Kristak L, Paridah MT (2022) Engineering wood products from Eucalyptus spp. Adv Mater Sci Eng. https://doi.org/10.1155/2022/8000780

    Article  Google Scholar 

  • Leonardi GDA, Carlos NA, Mazzafera P, Balbuena TS (2015) Eucalyptus urograndis stem proteome is responsive to short-term cold stress. Genet Mol Biol 38:191–198

    Article  CAS  Google Scholar 

  • Lidder P, Sonnino A (2012). Biotechnologies for the management of genetic resources for food and agriculture. In: Goodwin SF, Friedmann T, Dunlap JC (eds) Advances in genetics, vol 78. Academic Press, pp 1–167. ISSN 0065-2660, ISBN 9780123943941. https://doi.org/10.1016/B978-0-12-394394-1.00001-8

  • Lukmandaru G, Umi Farah Z, Djoko S, Widyanto DN, Mudji S (2016) Chemical properties and fiber dimension of Eucalyptus pellita from the 2nd generation of progeny tests in Pelaihari, South Borneo, Indonesia. Korean Wood Sci Technol 44(4):571–588. https://doi.org/10.5658/WOOD.2016.44.4.571

  • Martin B, Laplace P, Quillet G (1989) L'UAIC Afocel-Armef Informations Forêt. No 2. Pointe-Noire, Congo

    Google Scholar 

  • Martin B (1991) Les croisements controlés industriels: appui majeur à lavoie clonale. Nouvelle strategie pour les plantations forestières intensives. Paper, Theme 13, 10th world forestry congress, Paris. Proceedings, vol 5, pp 43–49

    Google Scholar 

  • Melesse SF, Zewotir T (2017) Variation in growth potential between hybrid clones of Eucalyptus trees in eastern South Africa. For Res 28:1157–1167. https://doi.org/10.1007/s11676-017-0400-0

    Article  CAS  Google Scholar 

  • Naidoo S, Kulheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, Wilken FE, Mamni TB, Myburg AA (2014) Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. Tree Physiol 34:931–943

    Article  CAS  Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization on Eucalyptus: key issues for breeders and geneticists. New for 27:115–138

    Article  Google Scholar 

  • Potts BM (2004) Genetic improvements of eucalypts. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Elsevier Academic Press, Oxford, pp 1480–1490. ISBN 9780121451608. https://doi.org/10.1016/B0-12-145160-7/00084-3

  • Prasetyo A, Aiso H, shiguri F, Wahyudi I, Wijaya PG, Ohshima J, Yokota S (2017) Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. TROPICS 26(2):59–69. ISSN: 0917-415X. https://doi.org/10.3759/tropics.MS16-15

  • Richardson DM, Rejmanek M (2011) Trees and shrubs as invasive alien species-a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Salleh S (1995) Eucalyptus plantations. The Malaysian experience. Silviculture Officer, Forestry Department. Kuala Lumpur, Peninsular Malaysia. RAP Publication: 1996/44 4-8 October 1993

    Google Scholar 

  • Sembiring N, Napitupulu HL, Sipahutar AI, Sembiring MT (2020) A review of sustainable replanting eucalyptus: higher sustainable productivity. In: IOP conference series: materials science and engineering, vol 935. IOP Publishing, p 012068. https://doi.org/10.1088/1757-899X/935/1/012068

  • Sharma SK, Shukla SR, Shashikala S, Poornima VS (2015) Axial variations in anatomical properties and basic density of Eucalypt urograndis hybrid (Eucalyptus grandis x E. urophylla) clones. J for Res 26:739–744

    Article  CAS  Google Scholar 

  • Stanturf JA, Vance ED, Fox TR, Kirst M (2013) Eucalyptus beyond Its native range: environmental issues in exotic bioenergy plantations. Int J For Res, 1–5

    Google Scholar 

  • The Star (2020) Eucalyptus the timber of the future. Tuesday, 08 Sep 2020. https://www.thestar.com.my/business/business-news/2020/09/08/eucalyptus-the-timber-of-the-future. Accessed 21 Sep 2021

  • Toloza AC, Lucia A, Zerba E, Masuh H, Picollo MI (2008) Interspecific hybridization of Eucalyptus as a potential tool to improve the bioactivity of essential oils against permethrin-resistant head lice from Argentina. Biores Technol 99(15):7341–7347

    Article  CAS  Google Scholar 

  • Van den Berg GJ (2017) A comparative study of two eucalyptus hybrid breeding strategies and the genetic gains of these strategies. Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in Forest Science in the Department of Plant and Soil Sciences Faculty of Natural and Agricultural Sciences University of Pretoria

    Google Scholar 

  • Wen Y, Zhou X, Yu S, Zhu H (2018) The predicament and countermeasures of development of global Eucalyptus plantations. Guangxi Sci 25(2):107–116

    Google Scholar 

  • Wingfield MJ (2003) Increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australas Plant Pathol 32:133–139. https://doi.org/10.1071/AP03024

    Article  Google Scholar 

  • Wong SK, Ahmad ZY, Charles GDC, Peter KCS (2015) Recommending Eucalyptus species for soft loan financing. Working paper presented at the 1st Technical Meeting on Forest Plantation Programme: Malaysian Timber Industry Board (MTIB), Kuala Lumpur

    Google Scholar 

  • Zaiton S, Paridah MT, Hazandy AH, Azim RARA (2018) Potential of eucalyptus plantation in Malaysia. Malays for 81(1):64–67

    Google Scholar 

  • Zhang Y, Wang X (2021) Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Sci Rep 11(1):19764

    Article  CAS  Google Scholar 

  • Zobel B (1992) Vegetative Propagation in production forestry—rooted cutting use has been very successful for some species. J Forest 90(4):29–33

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Transdisciplinary Fundamental Research Grant Scheme (TRGS 2018–1), reference code: TRGS/1/2018/UPM/01/2/3, by the Ministry of Higher Education (MOHE), Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seng Hua Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S.H. et al. (2024). Eucalyptus Plantation Worldwide, Its Hybridization and Cloning Development. In: Lee, S.H., Lum, W.C., Antov, P., Krišťák, Ľ., Rahandi Lubis, M.A., Fatriasari, W. (eds) Eucalyptus. Springer, Singapore. https://doi.org/10.1007/978-981-99-7919-6_1

Download citation

Publish with us

Policies and ethics