Skip to main content

The Physics of Biofunctionality in Nanoconfined Systems

  • Chapter
  • First Online:
Nanoscale Matter and Principles for Sensing and Labeling Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 206))

  • 92 Accesses

Abstract

Confinement creates an environment where degrees of freedom are reduced drastically. The major consequence of this reduction is a decrease in entropy and, in a closed system, the concomitant increase in enthalpy or, in other words, potential energy. This enhanced potential energy, on one hand, creates ordering in disordered media and on the other increases reactivity quite considerably. We discuss here some specific instances of enhanced biofunctions in confined systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manini, N.: Introduction to the Physics of Matter. Springer (2020)

    Google Scholar 

  2. Pippard, A.B.: The Physics of Vibration. Cambridge University Press (2007)

    Google Scholar 

  3. Besant, W.H.: A Treatise on Hydrodynamics and Hydrostatics. Nabu Press (2010)

    Google Scholar 

  4. Yu, C.-J., et al.: Phys. Rev. Lett. 82, 2326 (1999)

    Article  CAS  Google Scholar 

  5. Sanyal, M.K., et al.: Europhys. Lett. 36, 265 (1996); Chattopadhyay, S., Datta, A.: Phys. Rev. B 72, 099539 (2005); Cortes, L.B.G., et al.: J. Phys.: Condens. Matter 29, 064003 (2017)

    Google Scholar 

  6. Donnelly, S.E., et al.: Science 296, 507 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Yu, C.-J., et al.: Europhys. Lett. 50, 487 (2000)

    Article  CAS  Google Scholar 

  8. Kaganer, V.M., Möhwald, H., Dutta, P.: Rev. Mod. Phys. 71, 779 (1999)

    Article  CAS  Google Scholar 

  9. Sanyal, M.K., et al.: Phys. Rev. B 65, 033409 (2002)

    Article  Google Scholar 

  10. Chattopadhyay, S., et al.: Macromolecules 40, 9190 (2007)

    Article  CAS  Google Scholar 

  11. Biswas, N., et al.: Chem. Phys. Lett. 539–540, 157–162 (2012)

    Article  Google Scholar 

  12. Lister, D.G., Macdonald, J.N., Owen, N.L.: Internal Rotation and Inversion: Introduction to Large Amplitude Motion in Molecules. Academic Press (1978)

    Google Scholar 

  13. Parveen, R., et al.: J. Surf. Sci. Technol. 36, 137 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alokmay Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, A. (2024). The Physics of Biofunctionality in Nanoconfined Systems. In: Mohanta, D., Chakraborty, P. (eds) Nanoscale Matter and Principles for Sensing and Labeling Applications. Advanced Structured Materials, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-99-7848-9_26

Download citation

Publish with us

Policies and ethics