Skip to main content

Advances in Luminescence-Based Biosensing with Quantum Dots

  • Chapter
  • First Online:
Nanoscale Matter and Principles for Sensing and Labeling Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 206))

  • 101 Accesses

Abstract

The design and development of biosensors have assumed a centre stage for researchers in the present decade owing to the wide range of applications, such as disease diagnosis, drug delivery and monitoring of environmental and food quality. Therefore, it is crucial and required to build effective biosensors that can assess the finer points of biological interactions, even at very small scales, with extraordinary precision and with the highest sensitivities ever. Miniaturisation of the biosensing devices using micro-and nano-fabrication technologies has drawn considerable attention in recent years. With higher sensitivities and smaller detection limits by several orders of magnitude, these nano-objects have clearly improved performances. The fact that nanoparticles have high surface area to volume ratios, which enable the surface to be employed in a greater and far wider range of functional ways, is one advantage shared by all nanomaterials. Additionally, the unique electromechanical, optical, or physicochemical features of these materials are fantastic advantages for the development of biosensors. Furthermore, these nanomaterials can themselves act as transduction elements. This article provides an overview of applications of quantum dots in biosensing by employing luminescence-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Algar, W.R., Krull, U.J.: Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. Langmuir 25, 633–638 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  3. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Benchimol, S., Fuks, A., Jothy, S., Beauchemin, N., Shirota, K., Stanners, C.P.: Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57, 327–334 (1989)

    Article  CAS  PubMed  Google Scholar 

  5. Biju, V.: Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43, 744–764 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Biju, V., Itoh, T., Ishikawa, M.: Delivering quantum-dots to cells: bioconjugated quantum-dots for targeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev. 39, 3031–3056 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Block, T.M., Comunale, M.A., Lowman, M., Steel, L.F., Romano, P.R., Fimmel, C., Tennant, B.C., London, W.T., Evans, A.A., Blumberg, B.S., Dwek, R.A., Mattu, T.S., Mehta, A.S.: Proc. Natl. Acad. Sci. U. S. A. 102, 779–784 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Buch, R.M., Rechnitz, G.A.: Intact chemoreceptor-based biosensors: responses and analytical limits. Biosensors 4, 215–230 (1989)

    Article  CAS  Google Scholar 

  10. Chakrabarty, S., Maity, S., Yazhini, D., Ghosh, A.: Surface-directed disparity in self-assembled structures of small-peptide l-glutathione on gold and silver nanoparticles. Langmuir 36, 11255–11261 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Chatterjee, A., Priyam, A., Bhattacharya, S.C., Saha, A.: PH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides: a fluorimetric study. J. Lumin. 126, 764–770 (2007)

    Article  CAS  Google Scholar 

  13. Chatterjee, A., Priyam, A., Ghosh, D., Mondal, S., Bhattacharya, S.C., Saha, A.: Interaction of ZnS nanoparticles with flavins and glucose oxidase: a fluorimetric investigation. J. Lumin. 132, 545–549 (2012)

    Article  CAS  Google Scholar 

  14. Chen, R.F., Bowman, R.L.: Fluorescence polarization: measurement with ultraviolet-polarizing filters in a spectrophotofluorometer. Science 147, 729–732 (1965)

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J.L., Zhu, C.Q.: Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal. Chim. Acta 546, 147 (2005)

    Article  CAS  Google Scholar 

  16. Chi, C.W., Lao, Y.H., Li, Y.S., Chen, L.C.: A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection. Biosens. Bioelectron. 26, 3346 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Chinnathambi, S., Karthikeyan, S., Hanagata, N., Shirahata, N.: Molecular interaction of silicon quantum dot micelles with plasma proteins: hemoglobin and thrombin. RSC Adv. 9, 14928 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark, M.F., Adams, A.N.: Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 475–483 (1977)

    Article  CAS  PubMed  Google Scholar 

  19. Condorelli, G., Latronico, M.V.G., Cavarretta, E.: MicroRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63, 2177–2187 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Cui, D., Tian, F., Coyer, S.R., Wang, J., Pan, B., Gao, F., He, R., Zhang, Y.: Effects of antisensemyc-conjugated single-walled carbon nanotubes on HL-60 cells. J. Nanosci. Nanotechnol. 7 1639–1646 (2007)

    Google Scholar 

  21. Freeman, R., Girsh, J., Willner, I.: Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl. Mater. Interfaces 5, 2815 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh, S., Bhattacharya, S.C., Saha, A.: Probing of ascorbic acid by CdS/dendrimer nanocomposites: a spectroscopic investigation. Anal. Bioanal. Chem. 397, 1573–1582 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh, D., Ghosh, S., Saha, A.: Quantum dot based probing of mannitol: an implication in clinical diagnostics. Anal. Chim. Acta 675, 165–169 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh, S., Priyam, A., Bhattacharya, S.C., Saha, A.: Mechanistic aspects of quantum dot based probing of Cu (II) ions: role of dendrimer in sensor efficiency. J. Fluoresc. 19, 723–731 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh, D., Roy, C.N., Mondal, S., Kundu, S., Maiti, S., Bag, P.K., Saha, A.: Modulation of catalytic functionality of alkaline phosphatase induced by semiconductor quantum dots: evidence of substrate-mediated protection. RSC Adv. 6, 5024 (2016)

    Google Scholar 

  26. Gill, R., Bahshi, L., Freeman, R., Willner, I.: Optical detection of glucose and acetylcholine esterase inhibitors by H2O2‐sensitive CdSe/ZnS quantum dots. Angew. Chem., Int. Ed. 120, 1700 (2008)

    Google Scholar 

  27. Greene, K.L., Albertsen, P.C., Babaian, R.J., Carter, H.B., Gann, P.H., Han, M., Kuban, D.A., Sartor, A.O., Stanford, J.L., Zietman, A., Carroll, P.: Prostate specific antigen best practice statement: 2009 update. J. Urol. 189, S2–S11 (2013)

    Article  PubMed  Google Scholar 

  28. Han, M., Gao, X., Su, J.Z., Nie, S.: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Hildebrandt, N., Spillmann, C.M., Algar, W.R., Pons, T., Stewart, M.H., Oh, E., Susumu, K., Dı´az, S.A., Delehanty, J.B., Medintz, I.L.: Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications, Chem. Rev. 117, 536–711 (2017)

    Google Scholar 

  30. Hu, J., Liu, M.-H., Zhang, C.-Y.: Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chem. Sci. 9, 4258–4267 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huber, A.H., Zhu, B., Kwan, T., Kampf, J.P., Hegyi, T., Kleinfeld, A.M.: Fluorescence sensor for the quantification of unbound bilirubin concentrations. Clin. Chem. 58, 869−876 (2012)

    Google Scholar 

  32. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum-dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Jameson, D.M., Ross, J.A.: Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 110, 2685–2708 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karmakar, S., Das, T.K., Kundu, S., Maiti, S., Saha, A.: Physicochemical understanding of protein-bound quantum dot based sensitive probing of bilirubin: validation with real samples and implications of protein conformation in sensing. ACS Appl. Bio Mater. 3, 8820–8829 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  36. Kundu, S., Maiti, S., Ghosh, D., Roy, C.N., Saha, A.: Aqueous synthesis of protein-encapsulated ZnSe quantum dots and physical significance of semiconductor-induced Cu(II)ion sensing. ChemPhysChem 18, 2533–2540 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Kundu, S., Maiti, S., Das, T.K., Ghosh, D., Roy, C.N., Saha, A.: Exploiting the biomimetic and luminescence properties of multivalent dendrimer–semiconductor nanohybrid materials in the ultra-low level determination of folic acid. Analyst 142, 2491 (2017)

    Google Scholar 

  38. Lakowicz, J.R.: Effects of solvents on fluorescence emission spectra. In: Lakowicz, J.R. (ed.) Principles of Fluorescence Spectroscopy, pp. 187–215. Springer US, Boston, MA (1983)

    Google Scholar 

  39. Li, J., Li, X., Shi, X., He, X., Wei, W., Ma, N., Chen, H.: Highly sensitive detection of caspase-3 activities via a nonconjugated gold nanoparticle–quantum dot pair mediated by an inner-filter effect. ACS Appl. Mater. Interfaces 5, 9798–9802 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y., Schluesener, H., Xu, S.: Gold nanoparticle-based biosensors. Gold Bull. 43, 29–41 (2010)

    Article  Google Scholar 

  41. Li, Q., Tan, X., Fu, L., Liu, Q., Tang, W.: A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole (2015)

    Google Scholar 

  42. Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods 2, 910–919 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Ma, F., Liu, W.-J., Tang, B., Zhang, C.-Y.: A single quantum dot-based nanosensor for the signal-on detection of DNA methyltransferase. Chem. Commun. 53, 6868–6871 (2017)

    Article  CAS  Google Scholar 

  44. Ma, F., Liu, M., Wang, Z.-Y., Zhang, C.-Y.: Multiplex detection of histone-modifying enzymes by total internal reflection fluorescence-based single-molecule detection. Chem. Commun. 52, 1218–1221 (2016)

    Article  CAS  Google Scholar 

  45. Ma, Q., Su, X.: Recent advances and applications in QDs-based sensors. Analyst 136, 4883–4893 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. Mondal, S., Ghosh, S., Ghosh, D., Saha, A.: Physico-chemical aspects of quantum dot−vasodialator interaction: implications in nanodiagnostics. J. Phys. Chem. C 116, 9774–9782 (2012)

    Article  CAS  Google Scholar 

  49. Murphy, C.J.: Peer reviewed: optical sensing with quantum-dots. Anal. Chem. 74, 520A-526A (2002)

    Article  CAS  PubMed  Google Scholar 

  50. Noor, M.O., Shahmuradyan, A., Krull, U.J.: Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal. Chem. 85, 1860–1867 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Page, L.E., Zhang, X., Tyrakowski, C.M., Ho, C.-T., Snee, P.T.: Synthesis and characterization of DNA–quantum dot conjugates for the fluorescence ratiometric detection of unlabelled DNA. Analyst 141, 6251–6258 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R., Li, Q., Xu, P., Huang, T.: Dendrimermodified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 67, 8156–8163 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Pan, B., Cui, D., Xu, P., Li, Q., Huang, T., He, R., Gao, F.: Study on interaction between gold nanorod and bovine serum albumin. Colloids Surface A 295, 217–222 (2007)

    Article  CAS  Google Scholar 

  54. Park, J., Park, Y., Kim, S.: Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging. ACS Nano 7, 9416–9427 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Partin, A.W., Kattan, M.W., Subong, E.P., et al.: Combination of prostate-specific antigen, clinical stage, and gleason score to predict pathological stage of localized prostate cancer. JAMA 277, 1445–1451 (1997)

    Article  CAS  PubMed  Google Scholar 

  56. Petryayeva, E., Algar, W.R.: Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal. Chem. 85, 8817–8825 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. Petryayeva, E., Algar, W.R.: Multiplexed homogeneous assays of proteolytic activity using a smart phone and quantum dots. Anal. Chem. 86, 3195–3202 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. Priyam, A., Chatterjee, A., Bhattacharya, S.C., Saha, A.: Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay. Photochem. Photobiol. Sci. 8, 362–370 (2009)

    Article  CAS  PubMed  Google Scholar 

  59. Priyam, A., Chatterjee, A., Das, S.K., Saha, A.: Size dependent interaction of biofunctionalized CdS nanoparticles with tyrosine at different pH. Chem. Commun. 4122–4124 (2005)

    Google Scholar 

  60. Qiu, X., Hildebrandt, N.: Rapid and multiplexed microRNA diagnostic assay using quantum dot-based förster resonance energy transfer. ACS Nano 9, 8449–8457 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. Qiu, Z., Shu, J., Tang, D.: Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal. Chem. 89, 5152–5160 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. Reiss, P., Protière, M., Li, L.: Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum-dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. Sang, L.-J., Wang, H.-F.: Aminophenylboronic-acid-conjugated polyacrylic acid-Mn-doped ZnS quantum dot for highly sensitive discrimination of glycoproteins. Anal. Chem. 86, 5706–5712 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Schulz, J.B., Weller, M., Moskowitz, M.A.: Caspases as treatment targets in stroke and neurodegenerative diseases. Ann. Neurol. 45, 421–429 (1999)

    Article  CAS  PubMed  Google Scholar 

  66. Shanehsaz, M., Mohsenifar, A., Hasannia, S., Pirooznia, N., Samaei, Y., Shamsipur, M.: Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchim. Acta 180, 195–202 (2013)

    Article  CAS  Google Scholar 

  67. Su, S., Fan, J., Xue, B., Yuwen, L., Liu, X., Pan, D., Fan, C., Wang, L.: DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl. Mater. Interfaces 6, 1152–1157 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. Sun, C., Su, K.-H., Valentine, J., Rosa-Bauza, Y.T., Ellman, J.A., Elboudwarej, O., Mukherjee, B., Craik, C.S., Shuman, M.A., Chen, F.F., Zhang, X.: Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors. ACS Nano 4, 978–984 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thornberry, N.A., Lazebnik, Y.: Caspases: enemies within. Science 281, 1312–1316 (1998)

    Article  CAS  PubMed  Google Scholar 

  70. Tian, J., Zhou, L., Zhao, Y., Wang, Y., Peng, Y., Zhao, S.: Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92, 72–77 (2012).

    Google Scholar 

  71. Tsuboi, S., Jin, T.: Bioluminescence resonance energy transfer (bret)-coupled annexin v-functionalized quantum dots for near-infrared optical detection of apoptotic cells. ChemBioChem 18, 2231–2235 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. Tsuboi, S., Jin, T.: In vitro and in vivo fluorescence imaging of antibody−drug conjugate-induced tumor apoptosis using Annexin V−EGFP conjugated quantum dots. ACS Omega 7, 2105–2113 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Z.-Y., Wang, L.-J., Zhang, Q., Tang, B., Zhang, C.-Y.: Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem. Sci. 9, 1330–1338 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L.-Y., Zhou, Y.-Y., Wang, L., Zhu, C.-Q., Li, Y.-X., Gao, F.: Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Anal. Chim. Acta 466, 87–92 (2002)

    Article  CAS  Google Scholar 

  75. Watanabe, T., Tada, M., Nagai, H., Sasaki, S., Nakao, M.: Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642–648 (1998)

    Article  CAS  PubMed  Google Scholar 

  76. Wegner, K.D., Jin, Z., Linde´n, S., Jennings, T.L., Hildebrandt, N.: Quantum-dot-based Forster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano 7, 7411–7419 (2013)

    Google Scholar 

  77. Wegner, K.D., Hildebrandt, N.: Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015)

    Google Scholar 

  78. Weller, H.: Colloidal semiconductor q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 32, 41–53 (1993)

    Article  Google Scholar 

  79. Wu, L., Qu, X.: Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. Xiangyi, H., Liang, L., Huifeng, Q., Chaoqing, D., Jicun, R.: A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Ed. 45, 5140–5143 (2006)

    Article  Google Scholar 

  81. Xu, W., Xue, X., Li, T., Zeng, H., Liu, X.: Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. 48, 6849–6852 (2009)

    Article  CAS  Google Scholar 

  82. Xu, Q., Zhang, Y., Tang, B., Zhang, C.-Y.: Multicolorquantum dot-based chemical nose for rapid and array-free differentiation of multiple proteins. Anal. Chem. 88, 2051–2058 (2016)

    Article  CAS  PubMed  Google Scholar 

  83. You, X., He, R., Gao, F., Shao, J., Pan, B., Cui, D.: Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology 18, 035701 (2007)

    Google Scholar 

  84. Yu, X., Wen, K., Wang, Z., Zhang, X., Li, C., Zhang, S., Shen, J.: General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal. Chem. 88, 3512–3520 (2016)

    Article  CAS  PubMed  Google Scholar 

  85. Zeng, S., Yong, K.-T., Roy, I., Dinh, X.-Q., Yu, X., Luan, F.: A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6, 491–506 (2011)

    Google Scholar 

  86. Zhao, Y., Chen, F., Li, Q., Wang, L., Fan, C.: Isothermal amplification of nucleic acids. Chem. Rev. 115, 12491–12545 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, J., Wang, Q.-X., Zhang, C.-Y.: Liposome–quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J. Am. Chem. Soc. 135, 2056–2059 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha Ghosh, D., Saha, A. (2024). Advances in Luminescence-Based Biosensing with Quantum Dots. In: Mohanta, D., Chakraborty, P. (eds) Nanoscale Matter and Principles for Sensing and Labeling Applications. Advanced Structured Materials, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-99-7848-9_23

Download citation

Publish with us

Policies and ethics