Skip to main content

Beispielhafte Implikationen von naturinspirierten Berechnungsmethoden auf Therapeutika und computergestützte Arzneimittelentwicklung

  • Chapter
  • First Online:
Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik

Zusammenfassung

Die naturinspirierten Rechenverfahren (NIC) wurden effektiv zur Erforschung pharmazeutischer Komponenten und Verbindungen angewendet. NIC beinhaltet Problemlösungsmethoden, die auf Abstraktionen natürlicher Prozesse basieren und neue Wege bieten, natürliche Komplexität zu verstehen, zu modellieren und zu analysieren. Diese Algorithmen imitieren biologische Systeme, um neue Rechenparadigmen zu schaffen, wie Schwarmintelligenz, neuronale Netzwerke und evolutionäres Rechnen. Heutzutage werden die NIC-Algorithmen immer beliebter bei der Lösung komplexer Optimierungen in den meisten akademischen und industriellen Bereichen, einschließlich Arzneimitteldesign, Entwicklung, Therapeutika, molekulare Modellierung und Peptiddesign. Diese Algorithmen arbeiten mit einem kombinatorischen Ansatz für kleine Moleküle und Verbindungsentwürfe, die sich auf die pharmakologischen Eigenschaften neuer Arzneimittelkandidaten stützen. Im letzten Jahrzehnt wurden NIIC-Techniken erfolgreich in jeder Phase des Arzneimittelentdeckungs- und Entwicklungsprozesses angewendet, um das Hindernis komplexer und großer Daten aus Genomik, Proteomik, Microarray-Daten und klinischen Studien zu überwinden. Dieses Kapitel fasst die jüngsten Anwendungen von NIC-Methoden in der Therapie und computergestützten Arzneimittelentwicklung zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aarthy M et al (2017) Advantages of structure-based drug design approaches in neurological disorders. Curr Neuropharmacol 15(8):1136–1155

    Google Scholar 

  • Ahmad S et al (2021) Molecular dynamics simulation and docking studies reveal NF-κB as a promising therapeutic drug target for COVID-19

    Google Scholar 

  • Appel S et al (2019) Application of nature-inspired optimization algorithms and machine learning for heavy-ion synchrotrons. Int J Mod Phys A 34(36):1942019

    Google Scholar 

  • Baell J et al (2013) Ask the experts: past, present and future of the rule of five. Future Med Chem 5(7):745–752

    Google Scholar 

  • Bergdorf M et al (2021) Desmond/GPU Performance as of April 2021. DE Shaw Research, Tech Rep DESRES/TR–2021–01

    Google Scholar 

  • Boers EJ, Kuiper H (1992) Biological metaphors and the design of modular artificial neural networks

    Google Scholar 

  • Buchoux S (2017) FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics 33(1):133–134

    Google Scholar 

  • Choudhary N et al (2014) Quantum chemical calculations of conformation, vibrational spectroscopic, electronic, NBO and thermodynamic properties of 2, 2-dichloro-N-(2, 3-dichlorophenyl) acetamide and 2, 2-dichloro-N-(2, 3-dichlorophenyl) acetamide. Comput Theor Chem 1032:27–41

    Google Scholar 

  • Christen M et al (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26(16):1719–1751

    Google Scholar 

  • Emambocus BAS et al (2021) Dragonfly algorithm and its hybrids: a survey on performance, objectives and applications. Sensors 21(22):7542

    Google Scholar 

  • Fan X et al (2020) Review and classification of bio-inspired algorithms and their applications. J Bionic Eng 17(3):611–631

    Google Scholar 

  • Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111(22–23):3345–3362

    Google Scholar 

  • Frye L et al (2021) From computer-aided drug discovery to computer-driven drug discovery. Drug Discov Today Technol 39:111–117

    Google Scholar 

  • Gautam R, Kaur P, Sharma M (2019) A comprehensive review on nature inspired computing algorithms for the diagnosis of chronic disorders in human beings. Prog Artif Intell 8(4):401–424

    Google Scholar 

  • Gupta N (2013) Artificial neural network. Netw Complex Syst 3(1):24–28

    Google Scholar 

  • Halgren TA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Google Scholar 

  • Himabindu K, Jyothi S (2017) Nature inspired computation techniques and its applications in soft computing: survey. Int J Res Appl Sci Eng Technol 5(7):1906–1916

    Google Scholar 

  • Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. Scripps Res Inst Mol Graph Lab 10550:92037

    Google Scholar 

  • Keerthi S, Ashwini K, Vijaykumar M (2015) Survey paper on swarm intelligence. Int J Comput Appl 115(5)

    Google Scholar 

  • Llorach-Pares L et al (2017) Computer-aided drug design applied to marine drug discovery: Meridianins as Alzheimer’s disease therapeutic agents. Mar Drugs 15(12):366

    Google Scholar 

  • Losos JB, Ricklefs RE, MacArthur RH (2010) The theory of island biogeography revisited. Princeton University Press, Princeton

    Google Scholar 

  • McInnes G et al (2021) Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am J Hum Genet 108(4):535–548

    Google Scholar 

  • Mikkilä-Erdmann M (2001) Improving conceptual change concerning photosynthesis through text design. Learn Instr 11(3):241–257

    Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46(10):4769–4807

    Google Scholar 

  • Najjar A et al (2019) Fragment-based drug design of nature-inspired compounds. Phys Sci Rev 4(9)

    Google Scholar 

  • Nayak J et al (2020) Firefly algorithm in biomedical and health care: advances, issues and challenges. SN Comput Sci 1(6):1–36

    Google Scholar 

  • Nedjah N, de Macedo Mourelle L (2006) Swarm intelligent systems, vol 26. Springer

    Google Scholar 

  • Newton I (1990) Mathematical principles of natural philosophy. Encyclopaedia Britannica

    Google Scholar 

  • Onawole AT et al (2020) COVID-19: CADD to the rescue. Virus Res 285:198022

    Google Scholar 

  • Overgaard M, Mogensen J (2011) A framework for the study of multiple realizations: the importance of levels of analysis. Front Psychol 2:79

    Google Scholar 

  • Pathak N et al (2021) Phytochemical analysis and antifungal activity of weed extracts against Rhizoctonia root rot in Buckwheat (Fagopyrum tataricum)

    Google Scholar 

  • Pijper A (1939) The microscope in biology. S Afr J Sci 36(12):58–72

    Google Scholar 

  • Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinform 18(1):8.12.1–8.12.36

    Google Scholar 

  • Sachan AK et al (2014) Molecular structure, vibrational and electronic properties of 4-Phenyl-3H-1, 3-thiazol-2-ol using density functional theory and comparison of drug efficacy of keto and enol forms by QSAR analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 132:568–581

    Google Scholar 

  • Salehahmadi Z, Manafi A (2014) How can bee colony algorithm serve medicine? World J Plast Surg 3(2):87

    Google Scholar 

  • Seth D et al (2011) Nature-inspired novel drug design paradigm using nanosilver: efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 62(3):715–726

    Google Scholar 

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cogn Comput 7(6):706–714

    Google Scholar 

  • Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10(5):579–591

    Google Scholar 

  • Timmis J, Andrews P, Hart E (2010) On artificial immune systems and swarm intelligence. Swarm Intell 4(4):247–273

    Google Scholar 

  • Tong JC (2017) Applications of computer-aided drug design. Drug design: principles and applications. Springer, pp 1–7

    Google Scholar 

  • Verdonk ML et al (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Bioinform 52(4):609–623

    Google Scholar 

  • Yadav MK et al (2021) Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn 1–13

    Google Scholar 

  • Zekri M, Obreza TA (2003) Plant nutrients for citrus trees. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences

    Google Scholar 

  • Zhang S (2011) Computer-aided drug discovery and development. Drug Des Discov 23–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S. et al. (2024). Beispielhafte Implikationen von naturinspirierten Berechnungsmethoden auf Therapeutika und computergestützte Arzneimittelentwicklung. In: Raza, K. (eds) Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik. Springer, Singapore. https://doi.org/10.1007/978-981-99-7808-3_15

Download citation

Publish with us

Policies and ethics