Skip to main content

Anwendungen von naturinspiriertem Computing und künstlichen Intelligenzalgorithmen bei der Lösung von Komplikationen bei personalisierten Therapien

  • Chapter
  • First Online:
Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik

Zusammenfassung

Die personalisierte Medizin beinhaltet die Praxis, einen maßgeschneiderten Service für die Empfänger auf der Grundlage einiger spezifischer Faktoren zu liefern, die mit den Patienten zusammenhängen. Die Kenntnis der richtigen genetischen Informationen, des Lebensstils und der Umwelt kann dazu beitragen, die passende Therapie, Dosis oder das richtige System auszuwählen. Die Präzisionsmedizin hat das Potenzial, das Behandlungsverfahren entsprechend den Anforderungen der einzelnen Patienten zu modifizieren, indem sie den maximalen therapeutischen Wert mit einer erhöhten Sicherheitsmarge gewährleistet. Das naturinspirierte Rechnen (NIC) ermöglicht die Entwicklung neuer Rechentechniken durch Beobachtung des natürlich auftretenden Phänomens zur Lösung komplexer Probleme in verschiedenen Umgebungseinstellungen. Das letzte Jahrzehnt hat die Anwendung von NIC und künstlicher Intelligenz (KI) Techniken in der Entwicklung der personalisierten Medizin speziell für die Identifizierung von Krankheitsmustern und ihrer richtigen Therapie für präzise Behandlung bewiesen. Die Kontrolle von unerwünschten Arzneimittelreaktionen und Unterschieden beim Enzymmetabolismus bei Individuen wird ebenfalls von fortgeschrittenen NIC- und KI-Rechentools berücksichtigt. Sie helfen bei der Lösung verschiedener Probleme der personalisierten Medizin, einschließlich der Diagnose von Krankheiten und ihrer Behandlungen. Die Theorie und Anwendungen ausgewählter naturinspirierter Algorithmen für die Präzisionsmedizin werden überprüft, zusammen mit praktischen Anwendungen und einer Diskussion ihrer Vorteile und Einschränkungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aalaei S, Shahraki H, Rowhanimanesh A, Eslami S (2016) Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets. Iran J Basic Med Sci 19:476–482

    Google Scholar 

  • Agarwala V, Khozin S, Singal G et al (2018) Real-world evidence in support of precision medicine: clinico-genomic cancer data as a case study. Health Aff 37:765–772. https://doi.org/10.1377/hlthaff.2017.1579

  • Agbehadji IE, Awuzie BO, Ngowi AB, Millham RC (2020) Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing. Int J Environ Res Public Health 17:1–16. https://doi.org/10.3390/ijerph17155330

  • Aishwarya SS, Anto S (2014) A medical expert system based on genetic algorithm and extreme learning machine for diabetes disease diagnosis. Int J Sci Eng Technol Res 3:1375–1380

    Google Scholar 

  • Ali M, Aittokallio T (2019) Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys Rev 11:31–39

    Google Scholar 

  • Alshamlan H, Badr G, Alohali Y (2015) MRMR-ABC: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed Res Int 2015. https://doi.org/10.1155/2015/604910

  • Amato F, López A, Peña-Méndez EM et al (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47–58

    Google Scholar 

  • Anto S, Chandramathi S (2015) An expert system for breast cancer diagnosis using fuzzy classifier with ant colony optimization. Aust J Basic Appl Sci 9:172–177

    Google Scholar 

  • Ateeq K, Gopinath Ganapathy D (2017) The novel hybrid modified particle swarm optimization-neural network (MPSO-NN) algorithm for classifying the diabetes

    Google Scholar 

  • Awwalu J, Garba AG, Ghazvini A, Atuah R (2015) Artificial intelligence in personalized medicine application of AI algorithms in solving personalized medicine problems. Int J Comput Theory Eng 7:439–443. https://doi.org/10.7763/ijcte.2015.v7.999

  • Ashok B, Anu S, Nair H, Puviarasan DPA N (2016) Robust diagnosing technique for cervical cancer using random forest classifier

    Google Scholar 

  • Baxi V, Edwards R, Montalto M, Saha S (2022) Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol 35:23–32

    Google Scholar 

  • Beloufa F, Chikh MA (2013) Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm. Comput Methods Programs Biomed 112:92–103. https://doi.org/10.1016/j.cmpb.2013.07.009

  • Bhattad PB, Jain V (2020) Artificial intelligence in modern medicine – the evolving necessity of the present and role in transforming the future of medical care. Cureus. https://doi.org/10.7759/cureus.8041

  • Bhuvaneswari P, Therese AB (2015) Detection of cancer in lung with K-NN classification using genetic algorithm. Procedia Mater Sci 10:433–440. https://doi.org/10.1016/j.mspro.2015.06.077

  • Chowdhury M, Sadek AW (2012) Advantages and limitations of artificial intelligence. Artif Intell Appl to Crit Transp Issues 6:360–375

    Google Scholar 

  • de Carvalho Filho AO, Silva AC, de Paiva AC et al (2017) Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Med Biol Eng Comput 55:1129–1146. https://doi.org/10.1007/s11517-016-1577-7

  • Dedov II (2019) Personalized medicine. Vestn. Ross. Akad. Meditsinskikh Nauk 74:61–70

    Google Scholar 

  • Deoskar P, Singh D, Singh A (2013) An efficient support based ant colony optimization technique for lung cancer data. Int J Adv Res Comput Commun Eng 2

    Google Scholar 

  • Devi KI, Deepa SN (2016) Classification of cardiac arrhythmia using artificial neural network with optimization algorithm. Int J Innov Sci Eng Res 3

    Google Scholar 

  • Dhal KG, Ray S, Das A, Das S (2019) A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Arch Comput Methods Eng 26:1607–1638. https://doi.org/10.1007/s11831-018-9289-9

  • Dhanwani D, Wadhe PA (2013) Study of hybrid genetic algorithm using artificial neural network in data mining for the diagnosis of stroke disease. Int J Comput Eng Res 3:95–100

    Google Scholar 

  • Dubey A, Patel R, Choure K (2014) An efficient data mining and ant colony optimization technique (dmaco) for heart disease prediction. Int J Adv Technol Eng Explor ISSN 2394–7454

    Google Scholar 

  • Durairaj M, Sivagowry S (2015) A survey on particle swarm optimization and rough set theory in feature selection for heart disease prediction. Int J Comput Sci Mob Comput 4:87–92

    Google Scholar 

  • Ephzibah E (2011) Cost effective approach on feature selection using genetic algorithms and fuzzy logic for diabetes diagnosis. Int J Soft Comput 2:1–10. https://doi.org/10.5121/ijsc.2011.2101

  • F.M R (2013) Diagnosis of heart disease based on ant colony algorithm. Int J Comput Sci Inf Secur 11:

    Google Scholar 

  • Fan J, Han F, Liu H (2014) Challenges of big data analysis. Natl Sci Rev 1:293–314

    Google Scholar 

  • Federal Drug Administration (2019) Table of pharmacogenomic biomarkers in drug labeling|FDA. United States Gov. S 1–53

    Google Scholar 

  • Ferentinou MD, Sakellariou MG (2007) Computational intelligence tools for the prediction of slope performance. Comput Geotech 34:362–384. https://doi.org/10.1016/j.compgeo.2007.06.004

  • Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46. https://doi.org/10.1016/j.swevo.2013.06.001

  • Fiuzy M, Qarehkhani A, Haddadnia J et al (2013) Introduction of a method to diabetes diagnosis according to optimum rules in fuzzy systems based on combination of data mining algorithm (d-t), evolutionary algorithms (aco) and artificial neural networks (nn). J Math Comput Sci 06:272–285. https://doi.org/10.22436/jmcs.06.04.03

  • Ganji MF, Abadeh MS (2011) A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis. Expert Syst Appl 38:14650–14659. https://doi.org/10.1016/j.eswa.2011.05.018

  • Garg J (2016) Review on implementation of ACO technique for leukaemia detection. 5:859–862. https://doi.org/10.17148/IJARCCE.2016.54211

  • Ghosh G, Roy S, Merdji A (2020) A proposed health monitoring system using fuzzy inference system. Proc Inst Mech Eng Part H J Eng Med 234:562–569. https://doi.org/10.1177/0954411920908018

  • Goetz LH, Schork NJ (2018) Personalized medicine: motivation, challenges, and progress. Fertil Steril 109:952–963

    Google Scholar 

  • Gupta P, Kaur B (2014) Accuracy enhancement of artificial neural network using genetic algorithm. Int J Comput Appl 103:11–15. https://doi.org/10.5120/18133-9258

  • Huang S, Nianguang CAI, Penzuti Pacheco P et al (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15:41–51

    Google Scholar 

  • Hustinx R (2019) Physician centred imaging interpretation is dying out – why should I be a nuclear medicine physician? Eur J Nucl Med Mol Imaging 46:2708–2714

    Google Scholar 

  • Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0

  • Karthikeyan T, Vembandasamy K (2015) A novel algorithm to diagnosis Type II diabetes mellitus based on association rule mining using MPSO-LSSVM with outlier detection method. Indian J Sci Technol 8:310. https://doi.org/10.17485/ijst/2015/v8is8/53631

  • Kaur B, Singh W (2015) Analysis of heart attack prediction system using genetic algorithm. Int J Adv Technol Eng Sci 87–94

    Google Scholar 

  • Kavitha S, Nithya M (2020) An efficient cardiovascular disease prediction through pheromone based ACO with hybrid fuzzy logic. 1–4

    Google Scholar 

  • Kelwade JP, Salankar SS (2017) Prediction of heart abnormalities using particle swarm optimization in radial basis function neural network. Int Conf Autom Control Dyn Optim Tech ICACDOT 2016:793–797

    Google Scholar 

  • Khan Mansoori T, Suman A, Mishra SK (2014) Feature selection by genetic algorithm and svm classification for cancer detection

    Google Scholar 

  • Kohad R, Ahire V (2015) Application of machine learning techniques for the diagnosis of lung cancer with ant colony optimization. Int J Comput Appl 113:34–41. https://doi.org/10.5120/19928-2069

  • Kohad R, Ahire V, Kohad MR (2014) Diagnosis of lung cancer using support vector machine with ant colony optimization technique 3:19–25

    Google Scholar 

  • Kosorok MR, Laber EB (2019) Precision medicine. Annu. Rev. Stat. Its Appl. 6:263–286

    Google Scholar 

  • Kumari DJ (2017) Structural redesign of artificial neural network for predicting breast cancer with the aid of artificial bee colony. Indian J Sci Technol 10:1–8. https://doi.org/10.17485/ijst/2017/v10i15/108270

  • Kumar S, Sahoo G (2017) Medical dataset classification using k-NN and genetic algorithm. In: Advances in intelligent systems and computing. S 813–823

    Google Scholar 

  • Lassen UN, Makaroff LE, Stenzinger A et al (2021) Precision oncology: a clinical and patient perspective. Futur Oncol 17:3995–4009

    Google Scholar 

  • Lutimath NM, Ramachandra HV, Raghav S, Sharma N (2022) Prediction of heart disease using genetic algorithm. 49–58. https://doi.org/10.1007/978-981-16-3346-1_4

  • M D, S S, (2015) Feature diminution by using particle swarm optimization for envisaging the heart syndrome. Int J Inf Technol Comput Sci 7:35–43. https://doi.org/10.5815/ijitcs.2015.02.05

  • Mitra S, Shankar BU (2014) Integrating radio imaging with gene expressions toward a personalized management of cancer. IEEE Trans Human-Machine Syst 44:664–677. https://doi.org/10.1109/THMS.2014.2325744

  • Mitra S, Uma Shankar B (2015) Medical image analysis for cancer management in natural computing framework. Inf Sci (ny) 306:111–131. https://doi.org/10.1016/j.ins.2015.02.015

  • Mohebian MR, Marateb HR, Mansourian M et al (2017) A hybrid computer-aided-diagnosis system for prediction of breast cancer recurrence (HPBCR) using optimized ensemble learning. Comput Struct Biotechnol J 15:75–85. https://doi.org/10.1016/j.csbj.2016.11.004

  • Nazarian M, Dezfouli MA, Haronabadi A (2013) Classification of breast cancer samples through using the artificial bee colony algorithm. Int J Comput Appl Technol Res 2:522–525. https://doi.org/10.7753/ijcatr0205.1004

  • Nguyen BH, Xue B, Zhang M (2020) A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol Comput 54. https://doi.org/10.1016/j.swevo.2020.100663

  • Papadakis GZ, Karantanas AH, Tsikankis M et al (2019) Deep learning opens new horizons in personalized medicine (Review). Biomed Reports 10:215–217. https://doi.org/10.3892/br.2019.1199

  • Patankar V, Nawgaje D, Kanphade R (2014) A implementation of ant colony optimization technique for cancer diagnosis 4:2013–2015

    Google Scholar 

  • Ponomariov V, Chirila L, Apipie F-M, et al (2017) Artificial intelligence versus doctors’ intelligence: a glance on machine learning benefaction in electrocardiography. Discoveries 5:e76. https://doi.org/10.15190/d.2017.6

  • Radha P, Srinivasan B (2014) Feature selection using particle swarm optimization for predicting the risk of cardiovascular disease in type-ii diabetic patients. An Int J Adv Comput Technol 3

    Google Scholar 

  • Rajathi S, Radhamani G (2016) Prediction and analysis of Rheumatic heart disease using kNN classification with ACO. In: Proceedings of 2016 international conference on data mining and advanced computing, SAPIENCE 2016. S 68–73

    Google Scholar 

  • Soliman OS, AboElhamd E (2014) Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine. Int J Comput Trends Technol 8:38–44. https://doi.org/10.14445/22312803/ijctt-v8p108

  • Saini S (2017) Hybrid model using unsupervised filtering based on ant colony optimization and multiclass SVM by considering medical data set. Int Res J Eng Technol 4:2565–2571

    Google Scholar 

  • Schork NJ (2019) Artificial intelligence and personalized medicine. In: Cancer treatment and research. S 265–283

    Google Scholar 

  • Shah H, Chiroma H, Herawan T et al (2019) An efficient bio-inspired bees colony for breast cancer prediction. Lect Notes Electr Eng 520:597–608. https://doi.org/10.1007/978-981-13-1799-6_61

  • Shahbeig S, Helfroush MS, Rahideh A (2017) A fuzzy multi-objective hybrid TLBO–PSO approach to select the associated genes with breast cancer. Signal Process 131:58–65. https://doi.org/10.1016/j.sigpro.2016.07.035

  • Shathesh S, Durairaj M (2016) An intelligent hybrid mechanism to predict the risk of cardio vascular disease. Indian J Sci Technol 9. https://doi.org/10.17485/ijst/2016/v9i4/82278

  • Shen J, Zhang CJP, Jiang B, et al (2019) Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR Med. Informatics 7

    Google Scholar 

  • Shukla R (2014) Cancer detection using frequency pattern ant colony optimization 2:3922–3927

    Google Scholar 

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cognit Comput 7:706–714. https://doi.org/10.1007/s12559-015-9370-8

  • Singer J, Irmisch A, Ruscheweyh HJ et al (2017) Bioinformatics for precision oncology. Brief Bioinform 20:778–788. https://doi.org/10.1093/bib/bbx143

  • Singh G, Bathla G, Kaur S (2016) Design of new architecture to detect leukemia cancer from medical images. Int J Appl Eng Res 11:7087–7094

    Google Scholar 

  • Srinivasarao K (2014) Hybrid machine learning implementations for classifying dis-ease-treatment relations in short texts. Int J Adv Res Comput Sci-Ence Softw Eng 4:63–67

    Google Scholar 

  • Subanya B, Rajalaxmi RR (2014a) Artificial bee colony based feature selection for effective cardiovascular disease diagnosis. Int J Sci Eng Res 5:606–612

    Google Scholar 

  • Subanya B, Rajalaxmi RR (2014b) Feature selection using artificial bee colony for cardiovascular disease classification. In: 2014b International conference on electronics and communication systems, ICECS 2014b

    Google Scholar 

  • Turabieh H, Muhanna M (2016) GA-based feature selection with ANFIS approach to breast cancer recurrence. Int J Comput Sci Issues 13:36–41. https://doi.org/10.20943/ijcsi-201602-3641

  • Uzer MS, Yilmaz N, Inan O (2013) Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. Sci World J 2013. https://doi.org/10.1155/2013/419187

  • Vaishya R, Javaid M, Khan IH, Haleem A (2020) Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev 14:337–339. https://doi.org/10.1016/j.dsx.2020.04.012

  • Vimaladevi M, Kalaavathi DB (2014) Cancer classification using hybrid fast particle swarm optimization with backpropagation neural network. Ijarcce 3:8410–8414. https://doi.org/10.17148/ijarcce.2014.31112

  • Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22:387–408. https://doi.org/10.1007/s00500-016-2474-6

  • Zhang Y, Szolovits P (2008) Patient-specific learning in real time for adaptive monitoring in critical care. J Biomed Inform 41:452–460. https://doi.org/10.1016/j.jbi.2008.03.011

  • Zhang L, Yuan J (2015) Fault diagnosis of power transformers using kernel based extreme learning machine with particle swarm optimization. Appl Math Inf Sci 9:1003–1010. https://doi.org/10.12785/amis/090251

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karwasra, R. et al. (2024). Anwendungen von naturinspiriertem Computing und künstlichen Intelligenzalgorithmen bei der Lösung von Komplikationen bei personalisierten Therapien. In: Raza, K. (eds) Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik. Springer, Singapore. https://doi.org/10.1007/978-981-99-7808-3_11

Download citation

Publish with us

Policies and ethics