Skip to main content

Abstract

A nonlinear wing model based on a quasi-steady approach and the blade element theory is used to calculate the instantaneous aerodynamic forces for Flapping flight control simulations. Due to its robustness against external disturbances and nonlinear uncertainties, an Active Disturbance Rejection Controller (ADRC) with an Extended State Observer is utilized for the three-dimensional flight simulations. By using the artificial Central Pattern Generator (CPG) models together with the ADRC, bio-inspired controller structures are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai, K., Luo, Y., Dan, Z., Zhang, S., Wang, M., Qian, Q. and Zhong, J. (2020) ‘Extended state observer based attitude control of a bird-like flapping-wing flying robot’ Journal of Bionic Engineering, Vol. 17, No. 4, pp. 708-717.

    Article  Google Scholar 

  • Banazadeh, A. and Taymourtash, N. (2016) ‘Adaptive attitude and position control of an insect-like flapping-wing air vehicle’, Nonlinear Dynamics, Vol. 85, No.1, pp. 47-66.

    Article  MathSciNet  Google Scholar 

  • Bektaş, M. (2020) ‘Aeroelastic Analysis of Bio-inspired Flapping Wing Models’, Master’s thesis, Mechanical Engineering, TOBB University of Economics and Technology.

    Google Scholar 

  • Bektas, M., Güler, M. A. and Kurtulus, D. F. (2020) ‘One-way FSI analysis of bio-inspired flapping-wings’, International Journal of Sustainable Aviation, Vol. 6, No.3, pp.172-194.

    Article  Google Scholar 

  • Bektas, M., Güler, M. A., Kurtulus, D. F., ‘Numerical investigation of a Hawkmoth wing undergoing pure plunge motion in hover’ 10th Ankara International Aerospace Conference, AIAC-2019–038, 18–20 September 2019, METU, Ankara, Turkey

    Google Scholar 

  • http://aiac.ae.metu.edu.tr/paper.php/AIAC-2019-038

  • Calis, O., Kurtulus, D. F., and Arikan, K. B. (2021). ‘Modeling the Flapping Motion Via Quasi-Steady Approach and Controlling the Longitudinal Dynamics of a Flapping Wing MAV’., 11th Ankara International Aerospace Conference, AIAC-2021–110

    Google Scholar 

  • Calis, O., Arıkan, K. B., and Kurtuluş, D. F. (2019). ‘Control of a flapping wing micro air vehicle for navigation’., 10th Ankara International Aerospace Conference, AIAC-2019–041

    Google Scholar 

  • Calis, O. (2022) ’Modelling and Control of 3D Flapping Flight’, M.Sc. thesis, Middle East Technical University.

    Google Scholar 

  • Chen, J., Yin, B., Wang, C., Xie, F., Du, R., Zhong, Y. (2021) ‘Bioinspired Closed-loop CPG-based Control of a Robot Fish for Obstacle Avoidance and Direction Tracking’, Journal of Bionic Engineering, Vol. 18, No.1, pp. 171-183.

    Article  Google Scholar 

  • Cheng, B. and Deng, X. (2011) ‘Translational and rotational damping of flapping flight and its dynamics and stability at hovering’, IEEE Transactions on Robotics, Vol. 27, No.5, pp.849-864.

    Article  MathSciNet  Google Scholar 

  • Cheng, B., Deng, X. and Hedrick, T. L. (2011) ‘The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta)’, Jornal of Experimental Biology, Vol. 214, No. 24, pp. 4092–4106. (YouTube. URL: https://www.youtube.com/watch?v=BaE_KohggXQ)

  • Chin, D. D. and Lentink, D. (2016) ‘Flapping-wing aerodynamics: from insects to vertebrates’, Journal of Experimental Biology, Vol. 219, No.7, pp. 920-932.

    Article  Google Scholar 

  • Durmaz, O., Karaca, H.D., Ozen, G.D., Kasnakoglu, C., Kurtulus, D.F. (2013) ‘Dynamical modeling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques’, Mathematical and Computer Modelling of Dynamical Systems, Volume 19, Issue 2, pp.133–158.

    Google Scholar 

  • Ellington, C. P. (1984) ‘The aerodynamics of hovering insect flight. I. The quasi-steady analysis’, Philosophical Trans-actions of the Royal Society of London. B, Biological Sciences, Vol. 305, No. 1122, pp. 1–15.

    Google Scholar 

  • Gunaydinoglu, E. and Kurtulus, D.F. (2020) ‘Pressure–velocity coupling algorithm-based pressure reconstruction from PIV for laminar flows’, Experiments in Fluids, 61: 5

    Google Scholar 

  • Hsu, C. K., Evans, J., Vytla, S. and Huang, P. G. (2010) ‘Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight’, 48th AIAA aerospace sciences meeting including the new horizons forum and aero-space exposition, 4–7 January 2010, Orlando, Florida.

    Google Scholar 

  • Karásek, M. and Preumont, A. (2012a) ‘Flapping flight stability in hover: A comparison of various aerodynamic models’, International Journal of Micro Air Vehicles, Vol. 4, No.3, pp.203-226.

    Article  Google Scholar 

  • Karásek, M. and Preumont, A. (2012b) ‘Simulation of flight control of a hummingbird like robot near hover’, 18th In-ternational Conference Engineering Mechanics 2012, Svratka, Czech Republic, 14-17 May 2012, Paper No. 322, pp.152-153.

    Google Scholar 

  • Kurtulus, D.F. (2015) ‘On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re=1000’ International Journal of Micro Air Vehicles, Vol. 7, No. 3, pp.301–326.

    Article  Google Scholar 

  • Kurtulus, D. F., Farcy, A. and Alemdaroglu, N. (2005) ‘Unsteady aerodynamics of flapping airfoil in hovering flight at low Reynolds numbers’ 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 January 2005, Reno, Nevada.

    Google Scholar 

  • Kurtulus, D.F. (2018) ‘Aerodynamic loads of small amplitude pitching NACA 0012 airfoil at Reynolds Number of 1000’, AIAA Journal, Technical Note, Vol. 56, No. 8, pp. 3328–3331.

    Google Scholar 

  • Kurtulus, D. F. (2021) ‘Vortex flow aerodynamics behind a symmetric airfoil at low angles of attack and Reynolds Numbers’, International Journal of Micro Air Vehicles, Volume 13: 1–18, https://doi.org/10.1177/17568293211055653

  • Kurtulus, D.F. (2022) ‘Critical Angle and Fundamental Frequency of Symmetric Airfoils at Low Reynolds Numbers’, Journal of Applied Fluid Mechanics, Volume 15, Number 3, May 2022, pp.723–735, https://doi.org/10.47176/JAFM.15.03.33099.

  • Lee, J. S., Kim, J. K. and Han, J. H. (2015) ‘Stroke plane control for longitudinal stabilization of hovering flapping-wing air vehicles’, Journal of Guidance, Control, and Dynamics, Vol. 38, No.4, pp. 800-806.

    Article  Google Scholar 

  • Liang, S., Song, B., Xuan, J. and Li, Y. (2020) ‘Active disturbance rejection attitude control for the dove flapping wing micro air vehicle in intermittent flapping and gliding flight’, International Journal of Micro Air Vehicles, Vol. 12.

    Google Scholar 

  • Madangopal, R., Khan, Z. A. and Agrawal, S. K. (2006) ‘Energetics-based design of small flapping-wing micro air vehicles’, IEEE/ASME Transactions on Mechatronics, Vol. 11, No.4, pp. 433-438.

    Article  Google Scholar 

  • Nakata, T., Liu, H., Bomphrey, R. J., (2015) ‘A CFD-informed quasi-steady model of flapping-wing aerodynamics’ Journal of fluid mechanics, 2015, 783, 323-343. https://doi.org/https://doi.org/10.1017/jfm.2015.537

    Article  MathSciNet  Google Scholar 

  • Nguyen, A. T., Han, J. S. and Han, J. H. (2016) ‘Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta’, Bioinspiration & biomimetics, Vol.12, No.1, 016007.

    Article  Google Scholar 

  • Sane, S. P., and Dickinson, M. H. (2002) ‘The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight’, Journal of experimental biology, Vol. 205, No.8, pp. 1087-1096.

    Article  Google Scholar 

  • Simpson, R. J., Palacios, R. and Murua, J. (2013) ‘Induced-drag calculations in the unsteady vortex lattice meth-od’, AIAA journal, Vol. 51, No:7, pp.1775-1779. https://doi.org/https://doi.org/10.2514/1.J052136

    Article  Google Scholar 

  • Sun, M. and Tang, J. (2002) ‘Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion’, Journal of experimental biology, Vol. 205, No.1, pp. 55-70.

    Article  Google Scholar 

  • Taha, H. E., Kiani, M., Hedrick, T. L. and Greeter, J. S. (2020) ‘Vibrational control: A hidden stabilization mechanism in insect flight’, Science robotics, Vol.5, No.46.

    Google Scholar 

  • Usherwood, J. R. and Ellington, C. P. (2002) ‘The aerodynamics of revolving wings I. Model hawkmoth wings’, Journal of Experimental biology, Vol. 205, No.11, pp. 1547-1564.

    Article  Google Scholar 

  • Ward, T. A., Fearday, C. J., Salami, E. and Binti Soin, N. (2017) ‘A bibliometric review of progress in micro air vehicle research’, International Journal of Micro Air Vehicles, Vol. 9, No. 2, pp.146-165.

    Article  Google Scholar 

  • Willmott, A. P. and Ellington, C. P. (1997) ‘The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight’, The Journal of experimental biology, Vol. 200, No.21, pp. 2705-2722.

    Article  Google Scholar 

Download references

Acknowledgements

The support given by TUBITAK with project number 116M273 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgün Çalış .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çalış, Ö., Arıkan, K.B., Kurtuluş, D.F. (2024). A Bio-Inspired Control Approach for 3D Flapping-Flight. In: Khan, A.A., Hossain, M.S., Fotouhi, M., Steuwer, A., Khan, A., Kurtulus, D.F. (eds) Proceedings of the First International Conference on Aeronautical Sciences, Engineering and Technology . ICASET 2023. Springer, Singapore. https://doi.org/10.1007/978-981-99-7775-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7775-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7774-1

  • Online ISBN: 978-981-99-7775-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics