Skip to main content

Role of Medicinal Plants in the Management of Diabetes Mellitus

  • Chapter
  • First Online:
Role of Herbal Medicines

Abstract

Since ancient times, cure or prevention of diseases by medicinal plants was being practiced by indigenous people of different communities around the world through their traditional approaches. The development of civilization and humankind has shown the path of defining properties of medicinal plants and improvement in dealing with different diseases by the identification of responsible molecules. Diabetes mellitus (DM) represents a significant metabolic disorder of considerable concern. The disruption of insulin action in maintaining glucose homeostasis arises from elevated blood glucose levels, which can result from defects in insulin synthesis, secretion, binding to receptors, or increased insulin resistance. Other risk factors, such as obesity, urbanization, and genetic mutations, can further contribute to the development of DM. To counter this pathophysiological condition, several marketed remedies are available, but they limit their uses because of their expensive and several complications. On the other hand, the management of diabetes mellitus by herbal medicines is less cost-effective and the complications are also rare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manual of Medicine. Am J Med Sci. 1904;127:720–1.

    Article  Google Scholar 

  2. Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA. Glucose generates sub-plasma membrane ATP microdomains in single islet β-cells. Potential role for strategically located mitochondria. J Biol Chem. 1999;274(19):13281–91. https://doi.org/10.1074/jbc.274.19.13281.

    Article  PubMed  Google Scholar 

  3. Malaisse WJ, Sener A. Glucose-induced changes in cytosolic ATP content in pancreatic islets. BBA-Mol Cell Res. 1987;927(2):190–5.

    Google Scholar 

  4. Cook DL, Hales N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984;311(5983):271–3.

    Article  PubMed  Google Scholar 

  5. Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3–4):163–214.

    Article  PubMed  Google Scholar 

  6. Remedi MS, Nichols CG. Hyperinsulinism and diabetes. In: Ion channels in health and disease. Amsterdam: Elsevier; 2016. p. 199–221. https://doi.org/10.1016/B978-0-12-802002-9.00008-X.

    Chapter  Google Scholar 

  7. Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, et al. Regulation of L-type Ca2+ channel activity and insulin secretion by huntingtin-associated protein 1. J Biol Chem. 2016;291(51):26352–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Way SC. Voltage-gated Ca2+ current in pancreatic B-cells. Pflugers Arch. 1985;404:385–7.

    Article  Google Scholar 

  9. Ashcroft FM. Review series ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest. 2005;115(8):2047–58.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aung TTT, Xia MY, Hein PP, Tang R, Zhang DD, Yang J, et al. Chemical constituents from the whole plant of cuscuta reflexa. Nat Prod Bioprospect. 2020;10(5):337–44. https://doi.org/10.1007/s13659-020-00265-x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology. 1968;83(3):572–84.

    Article  PubMed  Google Scholar 

  12. Role of Ca2+ signaling in pancreatic β-cells.pdf.

    Google Scholar 

  13. Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci. 2009;122(7):893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Papadopoulos T, Abrahim A, Sergelidis D, Bitchava K. Ερευνητική. 2011;2(January):119–23.

    Google Scholar 

  15. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6):992–1019.

    Article  PubMed  Google Scholar 

  16. Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55(8):2096–108.

    Article  PubMed  Google Scholar 

  17. Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog Biophys Mol Biol. 2011;107(2):248–56. https://doi.org/10.1016/j.pbiomolbio.2011.07.010.

    Article  PubMed  Google Scholar 

  18. Wheeler MB, Light PE, Manning Fox JE, Riedel MJ. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol. 2002;16(9):2135–44.

    Article  PubMed  Google Scholar 

  19. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007;104(49):19333.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oates P. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9(1):14–36.

    Article  PubMed  Google Scholar 

  21. Kinoshita JH, Nishimura C. The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev. 1988;4(4):323–37.

    Article  PubMed  Google Scholar 

  22. Kim J, Kim CS, Sohn E, Lee YM, Jo K, Kim JS. Litsea japonica extract inhibits aldose reductase activity and hyperglycemia-induced lenticular sorbitol accumulation in db/db mice. Evid Based Complement Altern Med. 2015;2015:747830.

    Google Scholar 

  23. Ahmed AJ, Majeed SR, Obaid HM. Biochemistry and molecular cell biology of diabetic complications. Syst Rev Pharm. 2020;11(11):850–60.

    Google Scholar 

  24. Ramana KV. Aldose reductase: new insights for an old enzyme. Biomol Concepts. 2011;2(1–2):103–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thiebaut PA, Besnier M, Gomez E, Richard V. Role of protein tyrosine phosphatase 1B in cardiovascular diseases. J Mol Cell Cardiol. 2016;101:50–7. https://doi.org/10.1016/j.yjmcc.2016.09.002.

    Article  PubMed  Google Scholar 

  26. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative Med Cell Longev. 2020;2020:8609213.

    Article  Google Scholar 

  27. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomol Ther. 2015;5(1):194–222.

    Google Scholar 

  28. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–77. https://doi.org/10.1016/j.bbadis.2016.11.010.

    Article  PubMed  Google Scholar 

  30. Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci. 2022;9(September):1–11.

    Google Scholar 

  31. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):556–69.

    Article  Google Scholar 

  32. Patel OPS, Mishra A, Maurya R, Saini D, Pandey J, Taneja I, et al. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J Nat Prod. 2016;79(5):1276–84.

    Article  PubMed  Google Scholar 

  33. Sciences A, Abdulaziz K. Effect of aloes on blood glucose. J Ethnopharmacol. 1990;28:215–20.

    Article  Google Scholar 

  34. Leone A. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Front Endocrinol. 2022;13(February):800714.

    Google Scholar 

  35. Akhtar MS, Iqbal J. Evaluation of the hypoglycaemic effect of Achyranthes aspera in normal and alloxan-diabetic rabbits. J Ethnopharmacol. 1991;31(1):49–57.

    Article  PubMed  Google Scholar 

  36. Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol. 2003;84(1):105–8.

    Article  PubMed  Google Scholar 

  37. Narender T, Shweta S, Tiwari P, Reddy KP, Khaliq T, Prathipati P, et al. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg Med Chem Lett. 2007;17:1808–11.

    Article  PubMed  Google Scholar 

  38. Patel MB, Mishra S. Isoquinoline alkaloids from tinospora cordifolia inhibit rat lens aldose reductase. Phyther Res. 2012;26(9):1342–7.

    Article  Google Scholar 

  39. Chattopadhyay RR. A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol. 1999;67(3):367–72.

    Article  PubMed  Google Scholar 

  40. De Sousa E, Zanatta L, Seifriz I, Creczynski-Pasa TB, Pizzolatti MG, Szpoganicz B, et al. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α )-dirhamnoside from Bauhinia forficata leaves. J Nat Prod. 2004;67(5):829–32.

    Article  PubMed  Google Scholar 

  41. Kumar S, Krishnan S, Kumar A, Kishore K, Murari K, Kumar B, et al. Phytomedicine antihyperglycemic activity with DPP-IV inhibition of alkaloids from seed extract of Castanospermum australe: investigation by experimental validation and molecular docking. Eur J Integr Med. 2012;20(1):24–31. https://doi.org/10.1016/j.phymed.2012.09.009.

    Article  Google Scholar 

  42. Edwin Jarald E, Sheeja E, Motwani S, Dutt KR, Goel RK. Comparative evaluation of antihyperglycaemic and hypoglycaemic activity of various parts of Catharanthus roseus Linn. Res J Med Plant. 2008;2(1):10–5.

    Article  Google Scholar 

  43. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320–30. https://doi.org/10.1016/S2221-1691(12)60032-X.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Geetha BS, Mathew BC, Augusti KT. Hypoglycemic effects of leucodelphinidin derivative isolated from Ficus bengalensis (Linn.). Indian J Physiol Pharmacol. 1994;38(3):220–2.

    PubMed  Google Scholar 

  45. Da M, Pinto S, Kwon Y, Apostolidis E, Maria F, Inés M, et al. Bioresource technology potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Bioresour Technol. 2009;100(24):6599–609. https://doi.org/10.1016/j.biortech.2009.07.021.

    Article  Google Scholar 

  46. Paper O. Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3. J Biomed Sci. 2003;6:782–91.

    Google Scholar 

  47. Sarkar S, Pranava M, Marita R. Demonstration of the hypoglycemic action of momordica charantia in a validated animal model of diabetes. Pharmacol Res. 1996;33(1):1–4.

    Article  PubMed  Google Scholar 

  48. Dineshkumar B, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from murraya koenigii (rutaceae) leaves. Int J Phytomed. 2011;2:22–30.

    Google Scholar 

  49. Pandey J. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J Nat Prod. 2016;79(5):1276–84.

    Article  PubMed  Google Scholar 

  50. El-shaibany A, Al-habori M, Al-tahami B. Anti-hyperglycaemic activity of Tribulus terrestris L aerial part extract in glucose-loaded normal rabbits. Trop J Pharm Res. 2015;14(December):2263–8.

    Google Scholar 

  51. Adhikari B. Roles of alkaloids from medicinal plants in the management of diabetes mellitus. J Chem. 2021;2021:2691525.

    Article  Google Scholar 

  52. Singh SS, Pandey SC, Srivastava S, Gupta VS, Patro B, Ghosh AC. Chemistry and medicinal properties of Tinospora cordifolia (Guduchi). Indian J Pharm. 2003;35(2):83–91.

    Google Scholar 

  53. Khosla P, Gupta DD, Nagpal RK. Effect of trigonella Foenum graecum (Fenugreek) on serum lipids in-normal and diabetic rats. Indian J Pharm. 1995;27(2):89–93.

    Google Scholar 

  54. Kumar A, Bharti SK, Kumar A. Type 2 diabetes mellitus: the concerned complications and target organs. Apollo Med. 2014;11(3):161–6. https://doi.org/10.1016/j.apme.2014.01.009.

    Article  Google Scholar 

  55. Cooper EJ, Hudson AL, Parker CA, Morgan NG. Effects of the β-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol. 2003;482(1–3):189–96.

    Article  PubMed  Google Scholar 

  56. Yadav M, Khan KK, Beg MZ. Medicinal plants used for the treatment of diabetes by the baiga tribe living in Rewa District M. Pac Afr J. 2012;2(1):99–102. http://www.ajol.info/index.php/ajtcam/article/view/81432.

    Google Scholar 

  57. Kamiya K, Hamabe W, Harada S, Murakami R, Tokuyama S, Satake T. Chemical constituents of Morinda citrifolia roots exhibit hypoglycemic effects in streptozotocin-induced diabetic mice. Biol Pharm Bull. 2008;31(5):935–8.

    Article  PubMed  Google Scholar 

  58. Jung HA, Ali MY, Choi JS. Promising inhibitory effects of anthraquinones, naphthopyrone, and naphthalene glycosides, from Cassia obtusifolia on α-glucosidase and human protein tyrosine phosphatases 1B. Molecules. 2017;22(1):28.

    Article  Google Scholar 

  59. Tang L, Wei W, Chen L, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol. 2006;108:109–15.

    Article  PubMed  Google Scholar 

  60. Anandjiwala S, Bagul MS, Parabia M, Rajani M. Evaluation of free radical scavenging activity of an ayurvedic formulation. Indian J Exp Biol. 2008;43:31–5.

    Google Scholar 

  61. Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13(1):1–26. https://doi.org/10.1186/s13020-018-0177-x.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arvindekar A, More T, Payghan PV, Laddha K, Ghoshal N, Arvindekar A. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Food Funct. 2015;6(8):2693–700.

    Article  PubMed  Google Scholar 

  63. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia. 1996;52(2):115–20.

    Article  PubMed  Google Scholar 

  64. Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: a memoir. J Clin Biochem Nutr. 2007;41(2):77–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. García López PM, De La Mora PG, Wysocka W, Maiztegui B, Alzugaray ME, Del Zotto H, et al. Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol. 2004;504(1–2):139–42.

    Article  PubMed  Google Scholar 

  66. Mehrabi M, Esmaeili S, Ezati M, Abassi M, Rasouli H, Nazari D, et al. Antioxidant and glycohydrolase inhibitory behavior of curcumin-based compounds: Synthesis and evaluation of anti-diabetic properties in vitro. Bioorg Chem. 2021;110(November):104720. https://doi.org/10.1016/j.bioorg.2021.104720.

    Article  PubMed  Google Scholar 

  67. van de Venter M, Roux S, Bungu LC, Louw J, Crouch NR, Grace OM, et al. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J Ethnopharmacol. 2008;119(1):81–6.

    Article  PubMed  Google Scholar 

  68. Rath D, Kar DM, Panigrahi SK, Maharana L. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats. J Ethnopharmacol. 2016;192:442–9. https://doi.org/10.1016/j.jep.2016.09.026.

    Article  PubMed  Google Scholar 

  69. Liang B, Guo Z, Xie F, Zhao A. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med. 2013;13:253.

    Article  PubMed  PubMed Central  Google Scholar 

  70. O’Neill AR, Rana SK. An ethnobotanical analysis of parasitic plants (Parijibi) in the Nepal Himalaya. J Ethnobiol Ethnomed. 2016;12(1):1–15. https://doi.org/10.1186/s13002-016-0086-y.

    Article  Google Scholar 

  71. Hussain Z, Waheed A, Qureshi RA, Burdi DK, Verspohl EJ, Khan N, et al. The effect of medicinal plants of Islamabad and Murree region of Pakistan on insulin secretion from INS-1 cells. Phyther Res. 2004;18(1):73–7.

    Article  Google Scholar 

  72. Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M, Kimura I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J Asian Nat Prod Res. 2000;2(4):321–7.

    Article  PubMed  Google Scholar 

  73. Subramanian SP, Prasath GS. Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. Biomed Prev Nutr. 2014;4(4):475–80. https://doi.org/10.1016/j.bionut.2014.07.001.

    Article  Google Scholar 

  74. Current Medicinal Chemistry. http://books.google.com/books?hl=fr&lr=&id=W9LvB7-kG8sC&pgis=1.

  75. Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N. Comparison of antioxidative properties of carbazole alkaloids from Murraya koenigii leaves. J Agric Food Chem. 2003;51(22):6461–7.

    Article  PubMed  Google Scholar 

  76. Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, Ardévol A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology. 2004;145(11):4985–90.

    Article  PubMed  Google Scholar 

  77. Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, et al. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants. 2020;9(1):2.

    Article  Google Scholar 

  78. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem. 2002;277(38):34933–40.

    Article  PubMed  Google Scholar 

  79. Jung UJ, Lee M-K, Jeong K-S, Choi M-S. Biochemical and molecular actions of nutritients the hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice 1. J Nutr. 2004;134:2499–503.

    Article  PubMed  Google Scholar 

  80. Lee HS. Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J Agric Food Chem. 2002;50(24):7013–6.

    Article  PubMed  Google Scholar 

  81. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N. Biochemical and molecular actions of nutrients soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese zucker rats and murine RAW 264.7 cells 1. J Nutr. 2003;133(March):1238–43. https://academic.oup.com/jn/article-abstract/133/5/1238/4558583.

    Article  PubMed  Google Scholar 

  82. Welch AA, Hardcastle AC. The effects of flavonoids on bone. Curr Osteoporos Rep. 2014;12(2):205–10.

    Article  PubMed  Google Scholar 

  83. Nooreen Z, Tandon S, Yadav NP, Ahmad A. New chemical constituent from the stem of Cuscuta reflexa Roxb. and its biological activities. Nat Prod Res. 2021;35(14):2429–32. https://doi.org/10.1080/14786419.2019.1669033.

    Article  PubMed  Google Scholar 

  84. Kanwal A, Kanwar N, Bharati S, Srivastava P, Singh SP, Amar S. Exploring new drug targets for type 2 diabetes: success, challenges and opportunities. Biomedicine. 2022;10(2):1–18.

    Google Scholar 

  85. Matthews DR. Diabetes mellitus: a fundamental and clinical text. Clin Endocrinol. 2000;53(4):543–4.

    Article  Google Scholar 

  86. Uzor PF, Osadebe PO. Antidiabetic activity of the chemical constituents of Combretum dolichopetalum root in mice. EXCLI J. 2016;15:290–6.

    PubMed  PubMed Central  Google Scholar 

  87. Abima Shazhni JR, Renu A, Vijayaraghavan P. Insights of antidiabetic, anti-inflammatory and hepatoprotective properties of antimicrobial secondary metabolites of corm extract from Caladium x hortulanum. Saudi J Biol Sci. 2018;25(8):1755–61. https://doi.org/10.1016/j.sjbs.2018.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kuate D, Kengne APN, Biapa CPN, Azantsa BGK, Wan Muda WAM, Bin. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis. 2015;14(1):1–13.

    Article  Google Scholar 

  89. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol. 2005;97(3):497–501.

    Article  PubMed  Google Scholar 

  90. Attjioui M, Ryan S, Ristic AK, Higgins T, Goñi O, Gibney ER, et al. Carbohydrate digestive enzymes involved in glucose release from the diet. J Nutr Sci. 2021;10:e5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fukui K, Nakayama M, Matsui M. Murraya koenigii. 1969;1353:790–1.

    Google Scholar 

  92. Joshi BS, Kamat VN, Gawad DH. On the structures of girinimbine, mahanimbine, isomahanimbine, koenimbidine and murrayacine. Tetrahedron. 1970;26(5):1475–82.

    Article  PubMed  Google Scholar 

  93. Okechukwu P, Sharma M, Tan WH, Chan HK, Chirara K, Gaurav A, et al. In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia. 2020;67(4):363–71.

    Article  Google Scholar 

  94. Wansi JD, Wandji J, Mbaze Meva’a L, Kamdem Waffo AF, Ranjit R, Khan SN, et al. α-glucosidase inhibitory and antioxidant acridone alkaloids from the stem bark of Oriciopsis glaberrima ENGL. (Rutaceae). Chem Pharm Bull. 2006;54(3):292–6.

    Article  Google Scholar 

  95. Tabopda TK, Ngoupayo J, Liu J, Mitaine-Offer AC, Tanoli SAK, Khan SN, et al. Bioactive aristolactams from Piper umbellatum. Phytochemistry. 2008;69(8):1726–31.

    Article  PubMed  Google Scholar 

  96. Ullah N, Ali A, Ahmad B, Iqbal N, Adhikari A. Biomedicine & pharmacotherapy evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed Pharmacother. 2018;100:461–6. https://doi.org/10.1016/j.biopha.2018.01.008.

    Article  PubMed  Google Scholar 

  97. Al-Masri IM, Mohammad MK, Tahaa MO. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem. 2009;24(5):1061–6.

    Article  PubMed  Google Scholar 

  98. Jung HA, Yoon NY, Bae HJ, Min BS, Choi JS. Inhibitory activities of the alkaloids from coptidis rhizoma against aldose reductase. Arch Pharm Res. 2008;31(11):1405–12.

    Article  PubMed  Google Scholar 

  99. Sasaki T, Li W, Higai K, Koike K. Canthinone alkaloids are novel protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett. 2015;25(9):1979–81. https://doi.org/10.1016/j.bmcl.2015.03.014.

    Article  PubMed  Google Scholar 

  100. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine. Mol Cell Biol. 2000;20(15):5479–89.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia. 2015;102:182–8. https://doi.org/10.1016/j.fitote.2015.01.019.

    Article  PubMed  Google Scholar 

  102. Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. J Ethnopharmacol. 2015;171(1):28–36. https://doi.org/10.1016/j.jep.2015.05.020.

    Article  PubMed  Google Scholar 

  103. Tang D, Chen Q, Xin X, Aisa H. Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanism via PI3K/Akt signaling pathway. Biomed Pharmacother. 2017;87:145–52. https://doi.org/10.1016/j.biopha.2016.12.058.

    Article  PubMed  Google Scholar 

  104. Zhou J, Zhou S, Zeng S. Experimental diabetes treated with trigonelline: effect on β cell and pancreatic oxidative parameters. Fundam Clin Pharmacol. 2013;27(3):279–87.

    Article  PubMed  Google Scholar 

  105. Nojima H, Kimura I, Chen FJ, Sugihara Y, Haruno M, Kato A, et al. Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. J Nat Prod. 1998;61(3):397–400.

    Article  PubMed  Google Scholar 

  106. Wu D, Wen W, Qi C, Zhao R, Lü J, Zhong C, et al. Phytomedicine Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Eur J Integr Med. 2012;19(8–9):712–8. https://doi.org/10.1016/j.phymed.2012.03.003.

    Article  Google Scholar 

  107. Manuscript A. Function.

    Google Scholar 

  108. Uvarani C, Jaivel N, Sankaran M, Chandraprakash K, Ata A, Mohan PS. Axially chiral biscarbazoles and biological evaluation of the constituents from Murraya koenigii. Fitoterapia. 2014;94:10–20. https://doi.org/10.1016/j.fitote.2014.01.004.

    Article  PubMed  Google Scholar 

  109. Du H, Shao J, Gu P, Lu B, Ye X, Liu Z. Improvement of glucose tolerance by rhein with restored early-phase insulin secretion in db/db mice. J Endocrinol Investig. 2012;35(6):607–12.

    Article  Google Scholar 

  110. Yen GC, Der Duh P, Chuang DY. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000;70(4):437–41.

    Article  Google Scholar 

  111. Babu KS, Tiwari AK, Srinivas PV, Ali AZ, Raju BC, Rao JM. Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson. Bioorg Med Chem Lett. 2004;14(14):3841–5.

    Article  Google Scholar 

  112. Wang Z, Yang L, Fan H, Wu P, Zhang F, Zhang C, et al. Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum linn that inhibits DPP4. PeerJ. 2017;2017(5):1–14.

    Google Scholar 

  113. Choi SB, Ko BS, Park SK, Jang JS, Park S. Insulin sensitizing and α-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in Rhei Rhizoma. Life Sci. 2006;78(9):934–42.

    Article  PubMed  Google Scholar 

  114. Mohammed A, Ibrahim MA. Antidiabetic potential of anthraquinones: a review. Phytother Res. 2019;34:486–504.

    Article  PubMed  Google Scholar 

  115. Hii CST, Howell SL. Effects of epicatechin on rat islets of Langerhans. Diabetes. 1984;33(3):291–6.

    Article  PubMed  Google Scholar 

  116. Small E. American ginseng. N Am Cornucopia. 2020;160:71–8.

    Google Scholar 

  117. Lemus I, García R, Delvillar E, Knop G. Hypoglycaemic activity of four plants used in Chilean popular medicine. Phyther Res. 1999;13(2):91–4.

    Article  Google Scholar 

  118. Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of agaricus campestris (mushroom). J Endocrinol. 1998;157(2):259–66.

    Article  PubMed  Google Scholar 

  119. Rankin JW, Andreae MC, Chen CYO, O’Keefe SF. Effect of raisin consumption on oxidative stress and inflammation in obesity. Diabetes Obes Metab. 2008;10(11):1086–96.

    Article  PubMed  Google Scholar 

  120. Barky A, El Hussein SA. Saponins-and-their-potential-role-in-diabetes-mellitus. Diabetes Manage. 2017;7:148–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singhmura, S., Basak, S., Ghosh, N. (2023). Role of Medicinal Plants in the Management of Diabetes Mellitus. In: Dhara, A.K., Mandal, S.C. (eds) Role of Herbal Medicines . Springer, Singapore. https://doi.org/10.1007/978-981-99-7703-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7703-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7702-4

  • Online ISBN: 978-981-99-7703-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics