Skip to main content

Induction of Xenograft Tolerance and Chimerism as an Alternative Prevention of Xenograft Rejection

  • Chapter
  • First Online:
Glycoimmunology in Xenotransplantation
  • 69 Accesses

Abstract

As an alternative prevention of xenograft rejection, induction of immunological tolerance status is another strategy in which the host immune system of human recipients is specifically not responsive to the xenografted organs of pigs [1–3], but the human immune system is normally with the responding ability to infectious pathogens. There are huge progresses in strategies to induce tolerance across xenoantigenic hurdles and rejection barriers. Also, immune tolerance induction is potentially beneficial in xenotransplantation. By advanced progress in recent technologies of gene editing, survival time of xenotransplanted grafts of multiple-transgenic α1,3Gal-T KO pigs has greatly been prolonged, which is ranged from several days to months for transplanted organ grafts, allowing life-supporting healthy. For example, 2 years more survivals have been observed in non-life-supporting heterotopic model of xenotransplantation of cardiac xenografts. To achieve such success, continuous treatment with immunosuppressive drugs is prerequisite. In fact, to obtain much improved outcome, immunosuppression is required in host recipients and hence, anti-CD40 or anti-CD154 monoclonal Abs as immunosuppression agents are continuously administered. The status eventually causes death of recipient host from infectious diseases involved in chronically administered immunosuppression or from immune rejection of xenografts [4, 5], because immunosuppression is unsuccessful [6]. Human T-cell responses against xenoantigenic barriers of pigs are much strong rather than those of allogeneic antigens [7]. This invites a new strategic option for the tolerance induction in human host. Because two different immune responses including low T-cell-dependent Abs levels and innate immune response activation are directly associated with responsible damages of xenografts, immune tolerance against xenografts has been achieved using by approaches of mixed chimerism and thymus transplantation in pig-to-mouse xenotransplantation model. Such successful application has also been applied to pig-to-baboon xenotransplantation model as an experimental extension. To achieve such immune tolerance, alternative studies are cooperatively required for macro-chimerism persistence, prolonged survival of pig xenografts, and donor unresponsiveness [8]. Successful tolerance induction reflects success in xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y-G, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol. 2007;07(07):519–31.

    Article  CAS  Google Scholar 

  2. Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev. 2014;258(1):241–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sachs DH, Sykes M, Yamada K. Achieving tolerance in pig-to-primate xenotransplantation: reality or fantasy. Transpl Immunol. 2009;21(2):101–5.

    Article  PubMed  Google Scholar 

  4. Iwase H, Hara H, Ezzelarab M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation. 2017;24:e12293. https://doi.org/10.1111/xen.12293.

    Article  Google Scholar 

  5. Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pigto-primate cardiac xenograft. Nat Commun. 2016;7:11138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shin JS, Min BH, Kim JM, et al. Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-nonhuman primate islet xenotransplantation model. Xenotransplantation. 2016;23:300–9.

    Article  PubMed  Google Scholar 

  7. Yamada K, Sachs DH, DerSimonian H. Human antiporcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J Immunol. 1995;155:5249–56.

    Article  CAS  PubMed  Google Scholar 

  8. Yamada K, Sykes M, Sachs DH. Tolerance in xenotransplantation. Curr Opin Organ Transplant. 2017;22(6):522–8. https://doi.org/10.1097/MOT.0000000000000466.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moses RD, Pierson RN 3rd, Winn HJ, Auchincloss H Jr. Xenogeneic proliferation and lymphokine production are dependent on CD4þ helper T cells and self antigen-presenting cells in the mouse. J Exp Med. 1990;172:567–75.

    Article  CAS  PubMed  Google Scholar 

  10. Lee RS, Yamada K, Womer KL, Pillsbury EP, Allison KS, Marolewski AE, Geng D, Thall AD, Arn JS, Sachs DH, Sayegh MH, Madsen JC. Blockade of CD28-B7, but not CD40-CD154, prevents costimulation of allogeneic porcine and xenogeneic human anti-porcine T cell responses. J Immunol. 2000;164(6):3434–44. https://doi.org/10.4049/jimmunol.164.6.3434.

    Article  CAS  PubMed  Google Scholar 

  11. Seebach JD, Yamada K, McMorrow IM, et al. Xenogeneic human antipig cytotoxicity mediated by activated natural killer cells. Xenotransplantation. 1996;3:188–97.

    Article  Google Scholar 

  12. Tanabe T, Watanabe H, Shah JA, et al. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am J Transplant. 2017;17:1778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griesemer AD, Hirakata A, Shimizu A, et al. Results of gal-knockout porcine thymokidney xenografts. Am J Transplant. 2009;9:2669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fudaba Y, Onoe T, Chittenden M, et al. Abnormal regulatory and effector T cell function predispose to autoimmunity following xenogeneic thymic transplantation. J Immunol. 2008;181:7649–59.

    Article  CAS  PubMed  Google Scholar 

  15. Sykes M. Mixed chimerism and transplant tolerance. Immunity. 2001;14(4):417–24.

    Article  CAS  PubMed  Google Scholar 

  16. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med. 2008;358:362–8.

    Article  CAS  PubMed  Google Scholar 

  18. Tonomura N, Shimizu A, Wang S, et al. Pig islet xenograft rejection in a mouse model with an established human immune system. Xenotransplantation. 2008;15:129–35.

    Article  PubMed  Google Scholar 

  19. Lan P, Tonomura N, Shimizu A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34þ cell transplantation. Blood. 2006;108:487–92.

    Article  CAS  PubMed  Google Scholar 

  20. Li HW, Vishwasrao P, Holzl MA, et al. Impact of mixed xenogeneic porcine hematopoietic chimerism on human NK cell recognition in a humanized mouse model. Am J Transplant. 2017;17:353–64.

    Article  CAS  PubMed  Google Scholar 

  21. Kawahara T, Rodriguez-Barbosa JI, Zhao Y, et al. Global unresponsiveness as a mechanism of natural killer cell tolerance in mixed xenogeneic chimeras. Am J Transplant. 2007;7:2090–7.

    Article  CAS  PubMed  Google Scholar 

  22. Griesemer A, Liang F, Hirakata A, et al. Occurrence of specific humoral nonresponsiveness to swine antigens following administration of GalT-KO bone marrow to baboons. Xenotransplantation. 2010;17:300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liang F, Wamala I, Scalea J, et al. Increased levels of antinon-Gal IgG following pig-to-baboon bone marrow transplantation correlate with failure of engraftment. Xenotransplantation. 2013;20:458–68.

    Article  PubMed  Google Scholar 

  24. Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A. 2007;104:5062–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Wang H, Ide K, et al. Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPalpha capable of binding to human CD47. Cell Transplant. 2011;20:1915–20.

    Article  PubMed  Google Scholar 

  26. Tena AA, Sachs DH, Mallard C, et al. Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47. Transplantation. 2017;101:316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ildstad ST, Wren SM, Bluestone JA, Barbieri SA, Stephany D, Sachs DH. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10). J Immunol. 1986;136(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  28. Abe M, Qi J, Sykes M, Yang Y-G. Mixed chimerism induces donor-specific T-cell tolerance across a highly disparate xenogeneic barrier. Blood. 2002;99(10):3823–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ohdan H, Yang Y-G, Shimizu A, Swenson KG, Sykes M. Mixed chimerism induced without lethal conditioning prevents T cell- and anti-Galα1,3Gal-mediated graft rejection. J Clin Invest. 1999;104(3):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forte P, Lilienfeld BG, Baumann BC, Seebach JD. Human NK cytotoxicity against porcine cells is triggered by NKp44 and NKG2D. J Immunol. 2005;175(8):5463–70.

    Article  CAS  PubMed  Google Scholar 

  31. Lilienfeld BG, Garcia-Borges C, Crew MD, Seebach JD. Porcine UL16-binding protein 1 expressed on the surface of endothelial cells triggers human NK cytotoxicity through NKG2D. J Immunol. 2006;177(4):2146–52.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y, Ohdan H, Manilay JO, Sykes M. NK cell tolerance in mixed allogeneic chimeras. J Immunol. 2003;170(11):5398–405.

    Article  CAS  PubMed  Google Scholar 

  33. Kawahara T, Rodriguez-Barbosa JI, Zhao Y, Zhao G, Sykes M. Global unresponsiveness as a mechanism of natural killer cell tolerance in mixed xenogeneic chimeras. Am J Transplant. 2007;7(9):2090–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.

    Article  CAS  PubMed  Google Scholar 

  35. Li HW, Vishwasrao P, Hölzl MA, Chen S, Choi G, Zhao G, Sykes M. Impact of mixed xenogeneic porcine hematopoietic chimerism on human NK cell recognition in a humanized mouse model. Am J Transplant. 2017;17(2):353–64. https://doi.org/10.1111/ajt.13957.

    Article  CAS  PubMed  Google Scholar 

  36. Grzywacz B, Kataria N, Verneris MR. CD56dimCD16+ NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia. 2007;21(2):356–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li HW, Vishwasrao P, Hölzl MA, Chen S, Choi G, Zhao G, Sykes M. Impact of mixed xenogeneic porcine hematopoietic Chimerism on human NK cell recognition in a humanized mouse model. Am J Transplant. 2017;17(2):353–64.

    Article  CAS  PubMed  Google Scholar 

  38. Cooper DKC, Ekser B, Tector AJ. Immunobiological barriers to xenotransplantation. Int J Surg. 2015;23(Part B):211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lan P, Wang L, Diouf B, Eguchi H, Su H, Bronson R, et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood. 2004;103(10):3964–9.

    Article  CAS  PubMed  Google Scholar 

  40. Chardon P, Rogel-Gaillard C, Cattolico L, Duprat S, Vaiman M, Renard C. Sequence of the swine major histocompatibility complex region containing all non-classical class I genes. Tissue Antigens. 2001;57(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  41. Weiss EH, Lilienfeld BG, Müller S, Müller E, Herbach N, Keler B, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 2009;87(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  42. Bryceson YT, March ME, Ljunggren H-G, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214(1):73–91.

    Article  CAS  PubMed  Google Scholar 

  43. March ME, Long EO. β2 integrin induces TCRζ-Syk-phospholipase C-γ phosphorylation and paxillin-dependent granule polarization in human NK cells. J Immunol. 2011;186(5):2998–3005.

    Article  CAS  PubMed  Google Scholar 

  44. Bryceson YT, March ME, Barber DF, Ljunggren H-G, Long EO. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med. 2005;202(7):1001–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology. 2018;154(3):383–93. https://doi.org/10.1111/imm.12921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Höglund P, Sundbäck J, Olsson-Alheim MY, Johansson M, Salcedo M, Öhién C, et al. Host MHC class I gene control of NK-cell specificity in the mouse. Immunol Rev. 1997;155(1):11–28.

    Article  PubMed  Google Scholar 

  47. Kwiatkowski P, Artrip JH, John R, Edwards NM, Wang S-F, Michler RE, et al. Induction of swine major histocompatibility complex class I molecules on porcine endothelium by tumor necrosis factor-alpha reduces lysis by human natural killer cells. Transplantation. 1999;67(2):211–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2024). Induction of Xenograft Tolerance and Chimerism as an Alternative Prevention of Xenograft Rejection. In: Glycoimmunology in Xenotransplantation. Springer, Singapore. https://doi.org/10.1007/978-981-99-7691-1_18

Download citation

Publish with us

Policies and ethics