Skip to main content

Nanomedicines for the Treatment of Bacterial Diseases

  • Chapter
  • First Online:
Nanomedicine in Treatment of Diseases

Abstract

Bacterial infections pose serious threats to the lives of humans worldwide. Extensive applications of antibiotics have resulted in an increased resistance among various pathogenic bacteria against those antimicrobials. Development of such resistance has led to increment in the microbial virulence, increased hospitalization frequency, mortality and morbidity, and increased potential of the pathogens to evade the immune system by forming biofilms. The retention as well as efficacy of these drugs in the target tissues are affected by their bioavailability, pharmacodynamic, and pharmacokinetic parameters. All these hurdles result in the development of need for higher doses and frequent administrations for obtaining effective treatment doses and hence, induce undesirable outcomes. Treatment using nano-sized delivery methods is regarded as one of the major approaches, and thousands of researches and related articles have supported drug delivery system based on nanoparticles. Nanodrug delivery involves the mechanism by which the NPs are combined with one or more antimicrobial adjuncts, which can lead to increase or decrease in the bioavailability of the drug and related side effects. Administration of NPs as antibacterial material is an ingenious and cost-effective approach against a range of pathogenic bacteria. Hence, application of NPs as a cost-effective antimicrobial delivery method should be opted to increase the life and effectiveness of the drug. The dramatic increase in the bacterial resistance against a variety of antibiotics has emerged to pose a key threat to human health. The uncontrolled, frequent, and unprescribed usages of antibiotics have resulted in the induction of antibiotic resistance in numerous bacterial strains. The world is on the verge of entering into the postantibiotic era, where the more population will die because of bacterial infections than cancer. Therefore, the discovery of potent and novel bactericidal agents in current times, is inevitable and is of considerable clinical importance. In recent times, nanotechnology has developed as a new tool to tackle the deadly bacterial infections and is thought to have overcome the barriers experienced by conventional antimicrobials such as antibiotic resistance. The nanoparticles (NPs) have been increasingly reported to interact with major biomolecules such as ribosomes, enzymes, DNA that directly interfere with the gene expression, oxidative stress, and membrane permeability. As, the NPs target several biomolecules at the same time, it turns out to be very challenging for the bacteria to deal with them and develop resistance against them. In this chapter, we have highlighted the history of antibiotics and how different bacterial strains have developed antibiotic resistance to certain drugs. Moreover, the role of nanotechnology and efficacy of various nanomaterials in the fight against bacterial infections have been discussed along with pervious researches. In the end, future outcomes of using the nanomaterials in the field of medicine have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nii-Trebi NI. Emerging and neglected infectious diseases: insights, advances, and challenges. Biomed Res Int. 2017;2017:5245021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, Khan NA. Identification and characterization of antibacterial compound (s) of cockroaches (Periplaneta americana). Appl Microbiol Biotechnol. 2017;101(1):253–86.

    Article  PubMed  CAS  Google Scholar 

  3. Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. Recent development of nanomedicine for the treatment of bacterial biofilm infections. Viewpoints. 2021;2(1):20200065.

    Google Scholar 

  4. Kim MH. Nanoparticle-based therapies for wound biofilm infection: opportunities and challenges. IEEE Trans Nanobioscience. 2016;15(3):294–304.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14(3):199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kaimala S, Al-Sbiei A, Cabral-Marques O, Fernandez-Cabezudo MJ, Al-Ramadi BK. Attenuated bacteria as immunotherapeutic tools for cancer treatment. Front Oncol. 2018;8:136.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Riglar DT, Silver PA. Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol. 2018;16(4):214–25.

    Article  PubMed  CAS  Google Scholar 

  8. Holay M, Guo Z, Pihl J, Heo J, Park JH, Fang RH, Zhang L. Bacteria-inspired nanomedicine. ACS Appl Bio Mater. 2020;4(5):3830–48.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15(6):375–87.

    Article  PubMed  CAS  Google Scholar 

  10. Uddin TM, Chakraborty AJ, Khusro A, Zidan BR, Mitra S, Emran TB, Dhama K, Ripon MK, Gajdács M, Sahibzada MU, Hossain MJ. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750–66.

    Article  PubMed  Google Scholar 

  11. Ribeiro da Cunha B, Fonseca LP, Calado CR. Antibiotic discovery: where have we come from, where do we go? Antibiotics. 2019;8(2):45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jayachandran S. Pre-antibiotics era to post-antibiotic era. J Indian Acad Oral Med Radiol. 2018;30(2):100.

    Article  Google Scholar 

  13. Yang R. Plague: recognition, treatment, and prevention. J Clin Microbiol. 2018;56(1):e01519–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gould K. Antibiotics: from prehistory to the present day. J Antimicrob Chemother. 2016;71(3):572–5.

    Article  PubMed  CAS  Google Scholar 

  15. Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents. 2019;53(4):371–82.

    Article  PubMed  CAS  Google Scholar 

  16. Nicolaou KC, Rigol S. A brief history of antibiotics and select advances in their synthesis. J Antibiot. 2018;71(2):153–84.

    Article  CAS  Google Scholar 

  17. Mohr KI. History of antibiotics research. How to Overcome the Antibiotic Crisis; 2016. p. 237–272.

    Google Scholar 

  18. Pallasch TJ. Antibiotics: past, present, and future. CDA J. 1986;14(5):65–8.

    PubMed  CAS  Google Scholar 

  19. Tan SY, Tatsumura Y. Alexander Fleming (1881–1955): discoverer of penicillin. Singap Med J. 2015;56(7):366.

    Article  Google Scholar 

  20. Gaynes R. The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis. 2017;23(5):849.

    Article  PubMed Central  Google Scholar 

  21. Sykes JE, Papich MG. Antibacterial drugs. Canine and feline infectious diseases; 2014. p. 66–86.

    Google Scholar 

  22. Gajdács M, Albericio F. Antibiotic resistance: from the bench to patients. Antibiotics. 2019;8(3):129.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917–42.

    Article  PubMed  Google Scholar 

  24. Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL. Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends Microbiol. 2018;26(11):896–903.

    Article  PubMed  Google Scholar 

  25. Changotra R, Dhir A. Striking dual functionality of iron pyrite-graphene oxide nanocomposites in water treating and water splitting reactions. Chem Eng J. 2022;442:136201.

    Article  CAS  Google Scholar 

  26. Zarei-Baygi A, Harb M, Wang P, Stadler LB, Smith AL. Evaluating antibiotic resistance gene correlations with antibiotic exposure conditions in anaerobic membrane bioreactors. Environ Sci Technol. 2019;53(7):3599–609.

    Article  PubMed  CAS  Google Scholar 

  27. Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: one Health approach. Vet World. 2022;15(3):743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Saraiva MM, Moreira Filho AL, Freitas Neto OC, Silva NM, Givisiez PE, Gebreyes WA, Oliveira CJ. Off-label use of ceftiofur in one-day chicks triggers a short-term increase of ESBL-producing E coli in the gut. PLoS One. 2018;13(9):e0203158.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyet LT, Keeratikunakorn K, Kaeoket K, Ngamwongsatit N. Antibiotic resistant Escherichia coli from diarrheic piglets from pig farms in Thailand that harbor colistin-resistant mcr genes. Sci Rep. 2022;12(1):1–0.

    Article  Google Scholar 

  30. Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, Dittrich S. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):1–7.

    Article  Google Scholar 

  31. Tangcharoensathien V, Chanvatik S, Sommanustweechai A. Complex determinants of inappropriate use of antibiotics. Bull World Health Organ. 2018;96(2):141.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akova M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence. 2016;7(3):252–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Saravanan M, Ramachandran B, Barabadi H. The prevalence and drug resistance pattern of extended spectrum β-lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathog. 2018;114:180–92.

    Article  PubMed  Google Scholar 

  34. Ahmadi M, Ranjbar R, Behzadi P, Mohammadian T. Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of Klebsiella Pneumoniae. Expert Rev Anti-Infect Ther. 2022;20(3):463–72.

    Article  PubMed  CAS  Google Scholar 

  35. Reta A, Bitew Kifilie A, Mengist A. Bacterial infections and their antibiotic resistance pattern in Ethiopia: a systematic review. Adv Prev Med. 2019;2019:4380309.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ali SA, Taj MK, Ali SH. Antimicrobial resistance pattern of bacterial meningitis among patients in Quetta, Pakistan. Infect Drug Resist. 2021;14:5107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mihankhah A, Khoshbakht R, Raeisi M, Raeisi V. Prevalence and antibiotic resistance pattern of bacteria isolated from urinary tract infections in Northern Iran. J Res Med Sci. 2017;22:108.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ranjbar R, Izadi M, Hafshejani TT, Khamesipour F. Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses. J Infect Public Health. 2016;9(4):499–505.

    Article  PubMed  Google Scholar 

  39. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol. 2017;123(4):1003–18.

    Article  PubMed  CAS  Google Scholar 

  40. Cheng YH, Lin TL, Pan YJ, Wang YP, Lin YT, Wang JT. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother. 2015;59(5):2909–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kebede B, Yihunie W, Abebe D, Addis Tegegne B, Belayneh A. Gram-negative bacteria isolates and their antibiotic-resistance patterns among pediatrics patients in Ethiopia: a systematic review. SAGE Open Med. 2022;10:20503121221094191.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ahmed N, Khalid H, Mushtaq M, Basha S, Rabaan AA, Garout M, Halwani MA, Al Mutair A, Alhumaid S, Al Alawi Z, Yean CY. The molecular characterization of virulence determinants and antibiotic resistance patterns in human bacterial uropathogens. Antibiotics. 2022;11(4):516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Silva A, Costa E, Freitas A, Almeida A. Revisiting the frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections. Antibiotics. 2022;11(6):768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hashemzadeh M, Heydari R, Asareh Zadegan Dezfuli A, Saki M, Meghdadi H, Bakhtiyariniya P. Occurrence of multiple-drug resistance bacteria and their antimicrobial resistance patterns in burn infections from southwest of Iran. J Burn Care Res. 2022;43(2):423–31.

    Article  PubMed  Google Scholar 

  45. Bereket W, Hemalatha K, Getenet B, Wondwossen T, Solomon A, Zeynudin A, Kannan S. Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci. 2012;16(8):1039–44.

    PubMed  CAS  Google Scholar 

  46. Khan HA, Baig FK, Mehboob R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478–82.

    Article  Google Scholar 

  47. MacVane SH. Antimicrobial resistance in the intensive care unit: a focus on gram-negative bacterial infections. J Intensive Care Med. 2017;32(1):25–37.

    Article  PubMed  Google Scholar 

  48. Mihai MM, Preda M, Lungu I, Gestal MC, Popa MI, Holban AM. Nanocoatings for chronic wound repair—modulation of microbial colonization and biofilm formation. Int J Mol Sci. 2018;19(4):1179.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Balakrishnan K, Casimeer SC, Ghidan AY, Al Antary TM, Singaravelu A. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin-loaded PLGA nanoparticles. Biointerface Res Appl Chem. 2021;11(6):14520–8.

    Article  CAS  Google Scholar 

  50. Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview. Polymers. 2021;13(5):724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Varela MF, Stephen J, Lekshmi M, Ojha M, Wenzel N, Sanford LM, Hernandez AJ, Parvathi A, Kumar SH. Bacterial resistance to antimicrobial agents. Antibiotics. 2021;10(5):593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics. 2020;12(2):142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rodríguez-Félix F, López-Cota AG, Moreno-Vásquez MJ, Graciano-Verdugo AZ, Quintero-Reyes IE, Del-Toro-Sánchez CL, Tapia-Hernández JA. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon. 2021;7(4):e06923.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nag M, Lahiri D, Mukherjee D, Banerjee R, Garai S, Sarkar T, Ghosh S, Dey A, Ghosh S, Pattnaik S, Edinur HA. Functionalized chitosan nanomaterials: a jammer for quorum sensing. Polymers. 2021;13(15):2533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: a review. J Control Release. 2021;329:16–35.

    Article  PubMed  CAS  Google Scholar 

  56. Tarafdar JC, Sharma S, Raliya R. Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol. 2013;12(3)219–226.

    Google Scholar 

  57. Charelli LE, de Mattos GC, de Jesus S-BA, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res. 2022;24(1):1–5.

    Article  Google Scholar 

  58. Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14(7):7760–82.

    Article  PubMed  CAS  Google Scholar 

  59. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S. Manganese disulfide-silicon dioxide nano-material: synthesis, characterization, photocatalytic, antioxidant and antimicrobial studies. J Photochem Photobiol B Biol. 2019;198:111579.

    Article  CAS  Google Scholar 

  61. Grumezescu V, Gherasim O, Negut I, Banita S, Holban AM, Florian P, Icriverzi M, Socol G. Nanomagnetite-embedded PLGA spheres for multipurpose medical applications. Materials. 2019;12(16):2521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Balaraman P, Balasubramanian B, Liu WC, Kaliannan D, Durai M, Kamyab H, Alwetaishi M, Maluventhen V, Ashokkumar V, Chelliapan S, Maruthupandian A. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environ Res. 2022;204:112278.

    Article  PubMed  CAS  Google Scholar 

  63. Boulaiz H, Alvarez PJ, Ramirez A, Marchal JA, Prados J, Rodríguez-Serrano F, Perán M, Melguizo C, Aranega A. Nanomedicine: application areas and development prospects. Int J Mol Sci. 2011;12(5):3303–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hosseini M, Fazelian N, Fakhri A, Kamyab H, Yadav KK, Chelliapan S. Preparation, and structural of new NiS-SiO2 and Cr2S3-TiO2 nano-catalyst: photocatalytic and antimicrobial studies. J Photochem Photobiol B Biol. 2019;194:128–34.

    Article  CAS  Google Scholar 

  65. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29.

    Article  Google Scholar 

  66. Tabrez S, Khan AU, Mirza AA, Suhail M, Jabir NR, Zughaibi TA, Alam M. Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer. Nanotechnol Rev. 2022;11(1):1322–31.

    Article  CAS  Google Scholar 

  67. Zangabad PS, Karimi M, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale. 2017;9(4):1356–92.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology toward personalized vaccines. Adv Mater. 2020;32(13):1901255.

    Article  CAS  Google Scholar 

  69. Caciandone M, Niculescu AG, Grumezescu V, Bîrcă AC, Ghica IC, Vasile BȘ, Oprea O, Nica IC, Stan MS, Holban AM, Grumezescu AM. Magnetite nanoparticles functionalized with therapeutic agents for enhanced ENT antimicrobial properties. Antibiotics. 2022;11(5):623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):10143.

    Article  Google Scholar 

  71. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, Kumar NV. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021;21(1):1–21.

    Article  Google Scholar 

  73. Xu W, Qing X, Liu S, Chen Z, Zhang Y. Manganese oxide nanomaterials for bacterial infection detection and therapy. J Mater Chem B. 2022;10(9):1343–58.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv Sci. 2022;9(5):2103444.

    Article  CAS  Google Scholar 

  75. Kargozar S, Mozafari M. Nanotechnology and nanomedicine: start small, think big. Mater Today Proc. 2018;5(7):15492–500.

    Article  CAS  Google Scholar 

  76. El-Sayed A, Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ Sci Pollut Res. 2020;27(16):19200–13.

    Article  CAS  Google Scholar 

  77. Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric nanoparticles-loaded hydrogels for biomedical applications: a systematic review on in vivo findings. Polymers. 2022;14(5):1010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nobile L, Nobile S. Recent advances of nanotechnology in medicine and engineering. In: AIP conference proceedings. 2016;1736(1):020058. AIP Publishing LLC.

    Google Scholar 

  79. Saxena SK, Nyodu R, Kumar S, Maurya VK. Current advances in nanotechnology and medicine. In: NanoBioMedicine. Cham: Springer; 2020. p. 3–16.

    Chapter  Google Scholar 

  80. Sohlot M, Das S, Debnath N. Recent developments in silica nanoparticle-based drug delivery system. In: Nanotechnology for infectious diseases. Cham: Springer; 2022. p. 237–61.

    Chapter  Google Scholar 

  81. Hadiya S, Ibrahim RA, El-Baky A, Rehab M, Elsabahy M, Aly SA. Nanoparticles based combined antimicrobial drug delivery system as a solution for bacterial resistance. Bull Pharm Sci Assiut. 2022;45:1121–41.

    Article  Google Scholar 

  82. Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv. 2015;12(2):319–37.

    Article  PubMed  CAS  Google Scholar 

  83. Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. 2017;14(2):229–43.

    Article  PubMed  CAS  Google Scholar 

  84. AbouAitah K, Hassan HA, Swiderska-Sroda A, Gohar L, Shaker OG, Wojnarowicz J, Opalinska A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers. 2020;12(1):144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wu T, Huang H, Sheng Y, Shi H, Min Y, Liu Y. Transglutaminase-mediated PEGylation of nanobodies for targeted nano-drug delivery. J Mater Chem B. 2018;6(7):1011–7.

    Article  PubMed  CAS  Google Scholar 

  86. Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-targeted nano-sized vehicles for enhanced and site-specific drug delivery. Cancers. 2020;12(10):2837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Naeem M, Awan UA, Subhan F, Cao J, Hlaing SP, Lee J, Im E, Jung Y, Yoo JW. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res. 2020;43(1):153–69.

    Article  PubMed  CAS  Google Scholar 

  88. Maghsoudnia N, Eftekhari RB, Sohi AN, Zamzami A, Dorkoosh FA. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res. 2020;22(8):1–41.

    Article  Google Scholar 

  89. Zhang X, Chen X, Zhao Y. Nanosystems for immune regulation against bacterial infections: a review. ACS Appl Nano Mater. 2022;5(10):13959–13971.

    Google Scholar 

  90. Dash JP, Mani L, Nayak SK. Antibacterial activity of Blumea axillaris synthesized selenium nanoparticles against multidrug resistant pathogens of aquatic origin. Egypt J Basic Appl Sci. 2022;9(1):65–76.

    Google Scholar 

  91. Naidoo S, Daniels A, Habib S, Singh M. Poly-l-lysine–lactobionic acid-capped selenium nanoparticles for liver-targeted gene delivery. Int J Mol Sci. 2022;23(3):1492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):1–21.

    Article  Google Scholar 

  93. George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–64.

    Article  PubMed  CAS  Google Scholar 

  94. Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine. 2011;6:3281.

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother. 2022;146:112609.

    Article  PubMed  CAS  Google Scholar 

  96. Hosseini SM, Farmany A, Abbasalipourkabir R, Soleimani Asl S, Nourian A, Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: in vivo study. Ann Clin Microbiol Antimicrob. 2019;18(1):1–0.

    Article  CAS  Google Scholar 

  97. Daoush WM. Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res. 2017;5(3):00118.

    Google Scholar 

  98. Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yew YP, Shameli K, Miyake M, Khairudin NB, Mohamad SE, Naiki T, Lee KX. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab J Chem. 2020;13(1):2287–308.

    Article  CAS  Google Scholar 

  100. Andrade RG, Veloso SR, Castanheira EM. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications. Int J Mol Sci. 2020;21(7):2455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Materón EM, Miyazaki CM, Carr O, Joshi N, Picciani PH, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: a review. Appl Surface Sci Adv. 2021;6:100163.

    Article  Google Scholar 

  102. Antony VS, Sahithya CS, Durga Sruthi P, Selvarani J, Raji P, Prakash P, Ponnaiah P, Petchi I, Pattammadath S, Keeyari S. Itraconazole coated super paramagnetic iron oxide nanoparticles for antimicrobial studies. Biointerface Res Appl Chem. 2020;10:6218–25.

    Article  Google Scholar 

  103. Niculescu AG, Chircov C, Grumezescu AM. Magnetite nanoparticles: synthesis methods–a comparative review. Methods. 2021;199:16–27.

    Article  PubMed  Google Scholar 

  104. Maharramov AM, Ramazanov MA, Hasanova UA. Nanostructures for antimicrobial therapy—the modern trends in the treatment of bacterial infections. Antimicrob Nanoarchitectonics. 2017:445–73. https://doi.org/10.1016/B978-0-323-52733-0.00016-1.

  105. Barros CH, Casey E. A review of nanomaterials and technologies for enhancing the antibiofilm activity of natural products and phytochemicals. ACS Appl Nano Mater. 2020;3(9):8537–56.

    Article  CAS  Google Scholar 

  106. Holban AM, Grumezescu V, Grumezescu AM, Vasile BŞ, Truşcă R, Cristescu R, Socol G, Iordache F. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J Nanotechnol. 2014;5(1):872–80.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7(5):1700845.

    Article  Google Scholar 

  108. Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res. 2020;10(3):706–20.

    Article  PubMed  Google Scholar 

  109. Kiran AV, Kumari GK, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci. 2021;9(23):7667–704.

    Article  Google Scholar 

  110. Zhang Y, Hu M, Zhang W, Zhang X. Construction of tellurium-doped mesoporous bioactive glass nanoparticles for bone cancer therapy by promoting ROS-mediated apoptosis and antibacterial activity. J Colloid Interface Sci. 2022;610:719–30.

    Article  PubMed  CAS  Google Scholar 

  111. Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, Yao SQ, Hu Y. Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 2019;19(6):3671–5.

    Article  PubMed  CAS  Google Scholar 

  112. De R, Mahata MK, Kim KT. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv Sci. 2022;9(10):2105373.

    Article  CAS  Google Scholar 

  113. Zhao S, Yu Q, Pan J, Zhou Y, Cao C, Ouyang JM, Liu J. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity. Acta Biomater. 2017;54:294–306.

    Article  PubMed  CAS  Google Scholar 

  114. Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15(1):1–40.

    Article  Google Scholar 

  115. Guan B, Yan R, Li R, Zhang X. Selenium as a pleiotropic agent for medical discovery and drug delivery. Int J Nanomedicine. 2018;13:7473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kieliszek M, Błażejak S. Selenium: significance, and outlook for supplementation. Nutrition. 2013;29(5):713–8.

    Article  PubMed  CAS  Google Scholar 

  117. Davarani Asl F, Mousazadeh M, Azimzadeh M, Ghaani MR. Mesoporous selenium nanoparticles for therapeutic goals: a review. J Nanopart Res. 2022;24(10):1–4.

    Article  Google Scholar 

  118. Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106–16.

    Article  PubMed  CAS  Google Scholar 

  119. Ramoutar RR, Brumaghim JL. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem Biophys. 2010;58(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  120. Wang Y, Chen P, Zhao G, Sun K, Li D, Wan X, Zhang J. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem Toxicol. 2015;85:71–7.

    Article  PubMed  CAS  Google Scholar 

  121. Vekariya KK, Kaur J, Tikoo K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine. 2012;8(7):1125–32.

    Article  PubMed  CAS  Google Scholar 

  122. Menon S, Ks SD, Santhiya R, Rajeshkumar S, Kumar V. Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B: Biointerfaces. 2018;170:280–92.

    Article  PubMed  CAS  Google Scholar 

  123. Bi X, Bian P, Li Z. Synaptic acid encapsulated with selenium-mesoporous silica nanocomposite: a potential drug in treating cardiovascular disease. J Clust Sci. 2021;32(2):287–95.

    Article  CAS  Google Scholar 

  124. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2020;2(9):3764–87.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mandhata CP, Sahoo CR, Padhy RN. Biomedical applications of biosynthesized gold nanoparticles from cyanobacteria: an overview. Biol Trace Elem Res. 2022:200(12):1–21.

    Google Scholar 

  126. Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31(5):593–606.

    Article  PubMed  CAS  Google Scholar 

  127. Katas H, Lim CS, Azlan AY, Buang F, Busra MF. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J. 2019;27(2):283–92.

    Article  PubMed  Google Scholar 

  128. Khandelwal P, Singh DK, Poddar P. Advances in the experimental and theoretical understandings of antibiotic conjugated gold nanoparticles for antibacterial applications. ChemistrySelect. 2019;4(22):6719–38.

    Article  CAS  Google Scholar 

  129. Kesharwani P, Choudhury H, Meher JG, Pandey M, Gorain B. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci. 2019;103:484–508.

    Article  CAS  Google Scholar 

  130. Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA. Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomol Ther. 2020;10(3):452.

    CAS  Google Scholar 

  131. Milanezi FG, Meireles LM, de Christo Scherer MM, de Oliveira JP, da Silva AR, de Araujo ML, Endringer DC, Fronza M, Guimarães MC, Scherer R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J. 2019;27(7):968–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Peng C, Yu M, Zheng J. In situ ligand-directed growth of gold nanoparticles in biological tissues. Nano Lett. 2019;20(2):1378–82.

    Article  Google Scholar 

  133. Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Control Release. 2019;311:170–89.

    Article  PubMed  Google Scholar 

  134. Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J. Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arab J Chem. 2019;12(1):33–40.

    Article  CAS  Google Scholar 

  135. Ilgin P, Ozay O, Ozay H. A novel hydrogel containing thioether group as selective support material for preparation of gold nanoparticles: synthesis and catalytic applications. Appl Catal B Environ. 2019;241:415–23.

    Article  CAS  Google Scholar 

  136. Meng Y, Wang S, Li C, Qian M, Yan X, Yao S, Peng X, Wang Y, Huang R. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials. 2016;100:134–42.

    Article  PubMed  CAS  Google Scholar 

  137. Sun J, Liu F, Yu W, Jiang Q, Hu J, Liu Y, Wang F, Liu X. Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots. Nanoscale. 2019;11(11):5014–20.

    Article  PubMed  CAS  Google Scholar 

  138. Zhao X, Yang CX, Chen LG, Yan XP. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun. 2017;8(1):1–9.

    Article  Google Scholar 

  139. Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–8.

    Article  PubMed  CAS  Google Scholar 

  140. Huang F, Gao Y, Zhang Y, Cheng T, Ou H, Yang L, Liu J, Shi L, Liu J. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces. 2017;9(20):16880–9.

    Article  PubMed  CAS  Google Scholar 

  141. Xu C, Cao Y, Lei C, Li Z, Kumeria T, Meka AK, Xu J, Liu J, Yan C, Luo L, Khademhosseini A. Polymer–mesoporous silica nanoparticle core–shell nanofibers as a dual-drug-delivery system for guided tissue regeneration. ACS Appl Nano Mater. 2020;3(2):1457–67.

    Article  CAS  Google Scholar 

  142. Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017;46(16):4818–32.

    Article  PubMed  Google Scholar 

  143. Xu C, Akakuru OU, Zheng J, Wu A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front Bioeng Biotechnol. 2019;7:141.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kulkarni AP, Nagvekar VC, Veeraraghavan B, Warrier AR, Ts D, Ahdal J, Jain R. Current perspectives on treatment of gram-positive infections in India: what is the way forward? Interdiscip Perspect Infect Dis. 2019;2019:7601847.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ingle PU, Biswas JK, Mondal M, Rai MK, Kumar PS, Gade AK. Assessment of in vitro antimicrobial efficacy of biologically synthesized metal nanoparticles against pathogenic bacteria. Chemosphere. 2022;291:132676.

    Article  PubMed  CAS  Google Scholar 

  146. Pazos-Perez N, Pazos E, Catala C, Mir-Simon B, Gómez-de Pedro S, Sagales J, Villanueva C, Vila J, Soriano A, García de Abajo FJ, Alvarez-Puebla RA. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Sci Rep. 2016;6(1):1–0.

    Article  Google Scholar 

  147. Wohlwend N, Tiermann S, Risch L, Risch M, Bodmer T. Evaluation of a multiplex real-time PCR assay for detecting major bacterial enteric pathogens in fecal specimens: intestinal inflammation and bacterial load are correlated in Campylobacter infections. J Clin Microbiol. 2016;54(9):2262–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Xu Y, Wang H, Luan C, Liu Y, Chen B, Zhao Y. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens Bioelectron. 2018;100:404–10.

    Article  PubMed  CAS  Google Scholar 

  149. Liu CY, Weng CC, Lin CH, Yang CY, Mong KK, Li YK. Development of a novel engineered antibody targeting Neisseria species. Biotechnol Lett. 2017;39(3):407–13.

    Article  PubMed  CAS  Google Scholar 

  150. Liana AE, Marquis CP, Gunawan C, Gooding JJ, Amal R. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone. Colloids Surf B: Biointerfaces. 2017;151:47–57.

    Article  PubMed  CAS  Google Scholar 

  151. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MT, Hopkins KL, Iredell J. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2–2.

    Article  PubMed  CAS  Google Scholar 

  152. Bhattacharya A, Naik MR, Agrawal D, Sahu PK, Kumar S, Mishra SS. CNS depressant and muscle relaxant effect of ethanolic leaf extract of Moringa oleifera on albino rats. Int J Pharm Tech Res. 2014;6:1441–9.

    Google Scholar 

  153. Burman S, Bhattacharya K, Mukherjee D, Chandra G. Antibacterial efficacy of leaf extracts of Combretum album Pers. Against some pathogenic bacteria. BMC Complement Altern Med. 2018;18(1):1–8.

    Article  Google Scholar 

  154. Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem. 2021;476(6):2345–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bhattacharya P, Neogi S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Mater Res Express. 2017;4(9):095005.

    Article  Google Scholar 

  156. Wang X, Deng A, Cao W, Li Q, Wang L, Zhou J, Hu B, Xing X. Synthesis of chitosan/poly (ethylene glycol)-modified magnetic nanoparticles for antibiotic delivery and their enhanced anti-biofilm activity in the presence of magnetic field. J Mater Sci. 2018;53(9):6433–49.

    Article  CAS  Google Scholar 

  157. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57.

    Article  PubMed  CAS  Google Scholar 

  158. Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as promising alternative in the infection treatment. Int J Mol Sci. 2019;20(15):3806.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules. 2019;24(10):1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):4–2.

    Article  Google Scholar 

  161. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018;9:1441.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Paris JL, Colilla M, Izquierdo-Barba I, Manzano M, Vallet-Regí M. Tuning mesoporous silica dissolution in physiological environments: a review. J Mater Sci. 2017;52(15):8761–71.

    Article  CAS  Google Scholar 

  163. Hao N, Chen X, Jeon S, Yan M. Carbohydrate-conjugated hollow oblate mesoporous silica nanoparticles as nanoantibiotics to target mycobacteria. Adv Healthc Mater. 2015;4(18):2797–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. A mini review. Bioengineering. 2019;6(2):53.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018;67(6):537–43.

    Article  PubMed  CAS  Google Scholar 

  166. Vafajoo A, Rostami A, Foroutan Parsa S, Salarian R, Rabiee N, Rabiee G, Rabiee M, Tahriri M, Vashaee D, Tayebi L, Hamblin MR. Multiplexed microarrays based on optically encoded microbeads. Biomed Microdevices. 2018;20(3):1–4.

    Article  Google Scholar 

  167. Nasr SM, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int J Nanomedicine. 2020;15:4205.

    Article  Google Scholar 

  168. Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials. 2022;15(5):1799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, Souto EB. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nano. 2020;10(3):560.

    CAS  Google Scholar 

  170. Xiaoming F. Synthesis and optical absorption properties of anatase TiO2 nanoparticles via a hydrothermal hydrolysis method. Rare Metal Mater Eng. 2015;44(5):1067–70.

    Article  Google Scholar 

  171. Pu X, Zhang D, Gao Y, Shao X, Ding G, Li S, Zhao S. One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. J Alloys Compd. 2013;551:382–8.

    Article  CAS  Google Scholar 

  172. Zhao W, Wang H, Feng X, Zhang Y, Zhang S. Control over the morphology of TiO2 hierarchically structured microspheres in solvothermal synthesis. Mater Lett. 2015;158:174–7.

    Article  CAS  Google Scholar 

  173. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  174. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerfaces. 2010;81(1):81–6.

    Article  PubMed  CAS  Google Scholar 

  175. Manjula N, Selvan G, Beevi AH, Kaviyarasu K, Ayeshamariam A, Punithavelan N, Jayachandran M. Feasibility studies on avocado as reducing agent in TiO2 doped with Ag2O and Cu2O nanoparticles for biological applications. J Bionanosci. 2018;12(5):652–9.

    Article  CAS  Google Scholar 

  176. George A, Raj DM, Venci X, Raj AD, Irudayaraj AA, Josephine RL, Sundaram SJ, Al-Mohaimeed AM, Al Farraj DA, Chen TW, Kaviyarasu K. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ Res. 2022;203:111880.

    Article  PubMed  CAS  Google Scholar 

  177. Roopan SM, Bharathi A, Prabhakarn A, Rahuman AA, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim Acta A Mol Biomol Spectrosc. 2012;98:86–90.

    Article  PubMed  CAS  Google Scholar 

  178. Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res. 2012;111(6):2329–37.

    Article  PubMed  Google Scholar 

  179. Kayalvizhi K, Alhaji NM, Saravanakkumar D, Mohamed SB, Kaviyarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads–a kinetic and thermodynamic study. Environ Res. 2022;203:111814.

    Article  PubMed  CAS  Google Scholar 

  180. Anbumani D, Vizhi Dhandapani K, Manoharan J, Babujanarthanam R, Bashir AK, Muthusamy K, Alfarhan A, Kanimozhi K. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J King Saud Univ Sci. 2022;34(3):101896.

    Article  Google Scholar 

  181. Nithiyavathi R, Sundaram SJ, Anand GT, Kumar DR, Raj AD, Al Farraj DA, Aljowaie RM, AbdelGawwad MR, Samson Y, Kaviyarasu K. Gum-mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. J Infect Public Health. 2021;14(12):1893–902.

    Article  PubMed  CAS  Google Scholar 

  182. Orudzhev FF, Ramazanov SM, Isaev AB, Alikhanov NR, Sobola D, Presniakov MY, Kaviyarasu K. Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Mater Today Proc. 2021;36:364–7.

    Article  CAS  Google Scholar 

  183. Rajeswari R, Venugopal D, Raj AD, Arumugam J, Sundaram SJ, Kaviyarasu K. Effect of doping concentration for the properties of Fe-doped TiO2 thin films applications. Mater Today Proc. 2021;36:468–74.

    Article  CAS  Google Scholar 

  184. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology. 2007;18(28):285604.

    Article  Google Scholar 

  185. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011;6(8):933–40.

    Article  PubMed  CAS  Google Scholar 

  186. Anitha J, Miruthula S. Traditional medicinal uses, phytochemical profile and pharmacological activities of Luffa acutangula Linn. Int J Pharmacogn. 2014;1(3):174–83.

    CAS  Google Scholar 

  187. Dandge VS, Rothe SP, Pethe AS. Antimicrobial activity and pharmacognostic study of Luffa acutangula Roxb var amara on some deuteromycetes fungi. Int J Sci Inn Discov. 2010;2(1):191–6.

    Google Scholar 

  188. Vanajothi R, Sudha A, Manikandan R, Rameshthangam P, Srinivasan P. Luffa acutangula and Lippia nodiflora leaf extract induces growth inhibitory effect through induction of apoptosis on human lung cancer cell line. Biomed Prev Nutr. 2012;2(4):287–93.

    Article  Google Scholar 

  189. Abdelhalim MA, Mady MM, Ghannam MM. Physical properties of different gold nanoparticles: ultraviolet-visible and fluorescence measurements. J Nanomed Nanotechol. 2012;3(3):178–94.

    Article  Google Scholar 

  190. James MR, Cohen JB. The measurement of residual stresses by X-ray diffraction techniques. In: Treatise on materials science & technology, vol. 19. Elsevier; 1980. p. 1–62.

    Google Scholar 

  191. Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett. 2012;68:115–7.

    Article  CAS  Google Scholar 

  192. Hunagund SM, Desai VR, Kadadevarmath JS, Barretto DA, Vootla S, Sidarai AH. Biogenic and chemogenic synthesis of TiO 2 NPs via hydrothermal route and their antibacterial activities. RSC Adv. 2016;6(99):97438–44.

    Article  CAS  Google Scholar 

  193. Colthup NB. Spectra-structure correlations in the infra-red region. JOSA. 1950;40(6):397–400.

    Article  CAS  Google Scholar 

  194. Vizhi DK, Supraja N, Devipriya A, Tollamadugu NV, Babujanarthanam R. Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7). Adv Nano Res. 2016;4(2):129.

    Article  Google Scholar 

  195. Wu JJ, Liu SC. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater. 2002;14(3):215–8.

    Article  CAS  Google Scholar 

  196. Tiwari AK, Jha S, Agrawal R, Mishra SK, Pathak AK, Singh AK, Dikshit A, Awasthi RR. Anti-bacterial efficacy of phyto-synthesized zinc oxide nanoparticles using Murraya paniculata L. leaf extract. Sciences. 2022;4(7):464–471.

    Google Scholar 

  197. Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater. 2010;94(1):22–31.

    Article  PubMed  Google Scholar 

  198. Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016;472:145–56.

    Article  PubMed  CAS  Google Scholar 

  199. Madan HR, Sharma SC, Suresh D, Vidya YS, Nagabhushana H, Rajanaik H, Anantharaju KS, Prashantha SC, Maiya PS. Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:404–16.

    Article  PubMed  CAS  Google Scholar 

  200. Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015;26(5):1294–9.

    Article  CAS  Google Scholar 

  201. Rajiv P, Rajeshwari S, Venckatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc. 2013;112:384–7.

    Article  PubMed  CAS  Google Scholar 

  202. Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C, Pink D. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir. 2010;26(6):4429–36.

    Article  PubMed  CAS  Google Scholar 

  203. Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progr Nat Sci Mater Int. 2012;22(6):693–700.

    Article  Google Scholar 

  204. Rao B, Tang RC. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Nanosci Nanotechnol. 2017;8(1):015014.

    Article  Google Scholar 

  205. Ibrahim HM, El-Bisi MK, Taha GM, El-Alfy EA. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J Appl Pharm Sci. 2015;5(10):085–90.

    Article  CAS  Google Scholar 

  206. Kariminia S, Shamsipur A, Shamsipur M. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal. 2016;129:450–7.

    Article  PubMed  CAS  Google Scholar 

  207. Kumar GV, Su CH, Velusamy P. Ciprofloxacin loaded genipin cross-linked chitosan/heparin nanoparticles for drug delivery application. Mater Lett. 2016;180:119–22.

    Article  CAS  Google Scholar 

  208. Huang W, Chen L, Kang L, Jin M, Sun P, Xin X, Gao Z, Bae YH. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs. Adv Drug Deliv Rev. 2017;115:82–97.

    Article  PubMed  CAS  Google Scholar 

  209. Kalhapure RS, Renukuntla J. Thermo-and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact. 2018;295:20–37.

    Article  PubMed  CAS  Google Scholar 

  210. Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci. 2016;93:392–8.

    Article  PubMed  CAS  Google Scholar 

  211. Ernst J, Klinger-Strobel M, Arnold K, Thamm J, Hartung A, Pletz MW, Makarewicz O, Fischer D. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur J Pharm Biopharm. 2018;131:120–9.

    Article  PubMed  CAS  Google Scholar 

  212. Abdelghany S, Parumasivam T, Pang A, Roediger B, Tang P, Jahn K, Britton WJ, Chan HK. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J Drug Deliv Sci Technol. 2019;52:642–51.

    Article  CAS  Google Scholar 

  213. Chavan C, Bala P, Pal K, Kale SN. Cross-linked chitosan-dextran sulphate vehicle system for controlled release of ciprofloxaxin drug: an ophthalmic application. OpenNano. 2017;2:28–36.

    Article  Google Scholar 

  214. Sharma M, Gupta N, Gupta S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv. 2016;6(80):76621–31.

    Article  CAS  Google Scholar 

  215. Neihaya HZ, Zaman HH. Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates. Microb Pathog. 2018;116:200–8.

    Article  PubMed  CAS  Google Scholar 

  216. Song X, Lin Q, Guo L, Fu Y, Han J, Ke H, Sun X, Gong T, Zhang Z. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm Res. 2015;32(5):1741–51.

    Article  PubMed  CAS  Google Scholar 

  217. Bolla PK, Kalhapure RS, Rodriguez VA, Ramos DV, Dahl A, Renukuntla J. Preparation of solid lipid nanoparticles of furosemide-silver complex and evaluation of antibacterial activity. J Drug Deliv Sci Technol. 2019;49:6–13.

    Article  CAS  Google Scholar 

  218. Tang X, Zhu H, Sun L, Hou W, Cai S, Zhang R, Liu F. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int J Nanomedicine. 2014;9:5403.

    PubMed  PubMed Central  Google Scholar 

  219. Yang Y, Ding Y, Fan B, Wang Y, Mao Z, Wang W, Wu J. Inflammation-targeting polymeric nanoparticles deliver ciprofloxacin and tacrolimus for combating acute lung sepsis. J Control Release. 2020;321:463–74.

    Article  PubMed  CAS  Google Scholar 

  220. Abdelkader A, El-Mokhtar MA, Abdelkader O, Hamad MA, Elsabahy M, El-Gazayerly ON. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydr Polym. 2017;174:1041–50.

    Article  PubMed  CAS  Google Scholar 

  221. Rajendran K, Anwar A, Khan NA, Siddiqui R. Brain-eating amoebae: silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against Naegleria fowleri. ACS Chem Neurosci. 2017;8(12):2626–30.

    Article  PubMed  CAS  Google Scholar 

  222. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  PubMed  CAS  Google Scholar 

  223. Katva S, Das S, Moti HS, Jyoti A, Kaushik S. Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag. 2017;13(Suppl 4):S828.

    Google Scholar 

  224. Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, Saqalein M, Atif M, Sarwar A, Khurshid A, Amin N. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci Elite. 2018;10(2):352–74.

    Article  Google Scholar 

  225. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the management of microbial infection–overview and perspectives. Nano Today. 2014;9(4):478–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 2018;30(49):1802309.

    Article  Google Scholar 

  227. Yang Y, Deng Y, Huang J, Fan X, Cheng C, Nie C, Ma L, Zhao W, Zhao C. Size-transformable metal–organic framework–derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection. Adv Funct Mater. 2019;29(33):1900143.

    Article  Google Scholar 

  228. Sun J, Wei C, Liu Y, Xie W, Xu M, Zhou H, Liu J. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials. 2019;197:417–31.

    Article  PubMed  CAS  Google Scholar 

Further Reading

    Further related reading material can be found from the below mentioned sites.

    Download references

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Ammara Saleem .

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

    About this chapter

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this chapter

    Siddique, R., Saleem, A., Muhammad, F., Akhtar, M.F., Akhtar, B., Sharif, A. (2023). Nanomedicines for the Treatment of Bacterial Diseases. In: Akhtar, B., Muhammad, F., Sharif, A. (eds) Nanomedicine in Treatment of Diseases. Learning Materials in Biosciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-7626-3_3

    Download citation

    • DOI: https://doi.org/10.1007/978-981-99-7626-3_3

    • Published:

    • Publisher Name: Springer, Singapore

    • Print ISBN: 978-981-99-7625-6

    • Online ISBN: 978-981-99-7626-3

    • eBook Packages: MedicineMedicine (R0)

    Publish with us

    Policies and ethics