Skip to main content

Advantages of Nanomedicine Over Conventional Therapeutics

  • Chapter
  • First Online:
Nanomedicine in Treatment of Diseases

Abstract

The word nanotechnology fascinates masses and drives out interest from all corners of life including general public but especially for scientists around the world. Its applications are far reaching and since the very beginning of its introduction, it has been touted as the technology that could solve a plethora of problems. In science, several areas including medicine have benefited from development of new nanotechnology-based products. This chapter presents an introduction to nanotechnology in medicine and a summary of advantages of nanomedicine over conventional therapeutics. This also includes the use of nanotechnology for developing herbal products. In addition to advantages of nanomedicine, this chapter also sheds lights on some limitation of nanotechnology-based medicinal products. Moreover, an overview of some regulatory aspects related to nanomedicine and their toxicity is provided for a better understanding of the subject matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strebhardt K, Ullrich A. Paul Ehrlic’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.

    Article  PubMed  CAS  Google Scholar 

  2. Society TR, Engineering TRAo. Nanoscience and nanotechnologies: opportunities and uncertainties. Nanotechnol Nanosci. 2004; https://doi.org/10.1002/advs.202206707.

  3. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    Article  PubMed  CAS  Google Scholar 

  5. Baran E, Hasirci V. In vivo half life of nanoencapsulated L-asparaginase. J Mater Sci Mater Med. 2002;13:1113–21.

    Article  PubMed  CAS  Google Scholar 

  6. Benyettou F, Rezgui R, Ravaux F, Jaber T, Blumer K, Jouiad M, et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J Mater Chem B. 2015;3:7237–45.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao N, Woodle MC, Mixson AJ. Advances in Delivery Systems for Doxorubicin. J Nanomed Nanotechnol. 2018;9:519; https://doi.org/10.4172/2157-7439.1000519.

  8. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528:675–91.

    Article  PubMed  CAS  Google Scholar 

  9. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P. Doxorubicin and siRNA codelivery via chitosan-coated pH-responsive mixed micellar polyplexes for enhanced cancer therapy in multidrug-resistant tumors. Mol Pharm. 2016;13:4179–90.

    Article  PubMed  CAS  Google Scholar 

  10. Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target. 2018;26:296–310.

    Article  PubMed  CAS  Google Scholar 

  11. Hagan CT IV, Medik YB, Wang AZ. Nanotechnology approaches to improving cancer immunotherapy. Adv Cancer Res. 2018;139:35–56.

    Article  PubMed  Google Scholar 

  12. Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, et al. Modified-chitosan nanoparticles: novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci. 2016;93:38–44.

    Article  PubMed  CAS  Google Scholar 

  13. Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  PubMed  CAS  Google Scholar 

  14. Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10:1343–8.

    Article  Google Scholar 

  15. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8:37–45.

    Article  PubMed  CAS  Google Scholar 

  16. Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res Lett. 2014;9:1–7.

    CAS  Google Scholar 

  17. Abdelghany T, Al-Rajhi AM, Al Abboud MA, Alawlaqi M, Ganash Magdah A, Helmy EA, et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience. 2018;8:5–16.

    Article  Google Scholar 

  18. Bakhsheshi-Rad H, Hadisi Z, Ismail A, Aziz M, Akbari M, Berto F, et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test. 2020;82:106298.

    Article  CAS  Google Scholar 

  19. Foroutan Koudehi M, Zibaseresht R. Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber. Mater Technol. 2020;35:21–30.

    Article  CAS  Google Scholar 

  20. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. 2015;53:298–309.

    Article  CAS  Google Scholar 

  21. Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.

    Article  PubMed  CAS  Google Scholar 

  22. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:E128–E47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fernandez A-M, Van Derpoorten K, Dasnois L, Lebtahi K, Dubois V, Lobl TJ, et al. N-Succinyl-(β-alanyl-l-leucyl-l-alanyl-l-leucyl) doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. J Med Chem. 2001;44:3750–3.

    Article  PubMed  CAS  Google Scholar 

  24. Yalkowsky SH, Roseman TJ. Techniques of solubilization of drugs. New York: M. Dekker; 1981.

    Google Scholar 

  25. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci. 2003;100:6039–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yokogawa K, Nakashima E, Ishizaki J, Maeda H, Nagano T, Ichimura F. Relationships in the structure–tissue distribution of basic drugs in the rabbit. Pharm Res. 1990;7:691–6.

    Article  PubMed  CAS  Google Scholar 

  27. Hagelüken A, Grünbaum L, Nürnberg B, Harhammer R, ScHunack W, Seifert R. Lipophilic β-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem Pharmacol. 1994;47:1789–95.

    Article  PubMed  Google Scholar 

  28. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700.

    Article  PubMed  CAS  Google Scholar 

  29. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today. 2011;6:176–85.

    Article  CAS  Google Scholar 

  31. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv. 2010;7:895–913.

    Article  PubMed  CAS  Google Scholar 

  33. Butt AM, Abdullah N, Rani N, Ahmad N, Amin M. Endosomal escape of bioactives deployed via nanocarriers: insights into the design of polymeric micelles. Pharm Res. 2022;39:1047–64.

    Article  PubMed  CAS  Google Scholar 

  34. Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs. 2005;16:691–707.

    Article  PubMed  CAS  Google Scholar 

  35. Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol. 2007;18:1159–64.

    Article  PubMed  CAS  Google Scholar 

  36. Bromberg L, Alakhov V. Effects of polyether-modified poly (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. J Control Release. 2003;88:11–22.

    Article  PubMed  CAS  Google Scholar 

  37. Songsurang K, Suvannasara P, Phurat C, Puthong S, Siraleartmukul K, Muangsin N. Enhanced anti-topoisomerase II activity by mucoadhesive 4-CBS–chitosan/poly (lactic acid) nanoparticles. Carbohydr Polym. 2013;98:1335–42.

    Article  PubMed  CAS  Google Scholar 

  38. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci. 1987;84:3004–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–62.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Z-L, Onda K, Tanaka S, Toma T, Hirano T, Oka K. Induction of multidrug resistance in MOLT-4 cells by anticancer agents is closely related to increased expression of functional P-glycoprotein and MDR1 mRNA. Cancer Chemother Pharmacol. 2002;49:391–7.

    Article  PubMed  CAS  Google Scholar 

  41. Zaman G, Flens M, Van Leusden M, De Haas M, Mülder H, Lankelma J, et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci. 1994;91:8822–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Patil RR, Guhagarkar SA, Devarajan PV. Engineered nanocarriers of doxorubicin: a current update. Crit Rev Ther Drug Carrier Syst. 2008;25:1–61.

    Article  PubMed  CAS  Google Scholar 

  43. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Drug delivery. Cham: Springer; 2010. p. 3–53.

    Google Scholar 

  44. Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol. 2011;85:707–20.

    Article  PubMed  CAS  Google Scholar 

  45. Hu F-Q, Wu X-L, Du Y-Z, You J, Yuan H. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm. 2008;69:117–25.

    Article  PubMed  CAS  Google Scholar 

  46. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96:273–83.

    Article  PubMed  CAS  Google Scholar 

  47. Perche F, Patel NR, Torchilin VP. Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG–PE micelles in ovarian cancer cell spheroid model. J Control Release. 2012;164:95–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91:1775–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J, et al. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investig New Drugs. 2011;29:1029–37.

    Article  CAS  Google Scholar 

  50. Kim D, Gao ZG, Lee ES, Bae YH. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm. 2009;6:1353–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cai L-L, Liu P, Li X, Huang X, Ye Y-Q, Chen F-Y, et al. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int J Nanomedicine. 2011;6:3499.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee M, Jeong J, Kim D. Intracellular uptake and pH-dependent release of doxorubicin from the self-assembled micelles based on amphiphilic polyaspartamide graft copolymers. Biomacromolecules. 2015;16:136–44.

    Article  PubMed  CAS  Google Scholar 

  53. Li Y, Xu B, Bai T, Liu W. Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials. 2015;55:12–23.

    Article  PubMed  Google Scholar 

  54. Lu J, Zhao W, Huang Y, Liu H, Marquez R, Gibbs RB, et al. Targeted delivery of doxorubicin by folic acid-decorated dual functional nanocarrier. Mol Pharm. 2014;11:4164–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res. 2023;1–19. https://doi.org/10.1080/08982104.2023.2268710.

  56. Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60:886–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:1–10.

    Article  CAS  Google Scholar 

  58. Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig. 2001;19:424–36.

    Article  CAS  Google Scholar 

  59. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  PubMed  CAS  Google Scholar 

  60. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54:3352–6.

    PubMed  CAS  Google Scholar 

  61. Chen Q, Tong S, Dewhirst MW, Yuan F. Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther. 2004;3:1311–7.

    Article  PubMed  CAS  Google Scholar 

  62. Li W, Huang Z, MacKay JA, Grube S, Szoka FC. Low-pH-sensitive poly (ethylene glycol)(PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J Gene Med. 2005;7:67–79.

    Article  PubMed  Google Scholar 

  63. Gravitz L. Physical scientists take on cancer. Nature. 2012;491:S49.

    Article  PubMed  Google Scholar 

  64. Maeda H, Ueda M, Morinaga T, Matsumoto T. Conjugation of poly (styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J Med Chem. 1985;28:455–61.

    Article  PubMed  CAS  Google Scholar 

  65. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet. 2003;42:1089.

    Article  PubMed  CAS  Google Scholar 

  66. Leiro V, Garcia JP, Tomás H, Pêgo AP. The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug Chem. 2015;26(7):1182–97.

    Article  PubMed  CAS  Google Scholar 

  67. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4:675–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4:e10143.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med. 2010;363:2434–43.

    Article  PubMed  CAS  Google Scholar 

  70. Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AKO, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech. 2019;20:121.

    Article  PubMed  CAS  Google Scholar 

  72. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen D-B, Yang T-Z, Lu W-L, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 2001;49:1444–7.

    Article  CAS  Google Scholar 

  74. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453:215–24.

    Article  PubMed  CAS  Google Scholar 

  75. Ismail R, Phan TNQ, Laffleur F, Csóka I, Bernkop-Schnürch A. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. Eur J Pharm Biopharm. 2020;152:10–7.

    Article  PubMed  CAS  Google Scholar 

  76. Gurevich EV, Gurevich VV. Therapeutic potential of small molecules and engineered proteins. Handb Exp Pharmacol. 2014;219:1–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wang J-J, Liu K-S, Sung KC, Tsai C-Y, Fang J-Y. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur J Pharm Sci. 2009;38:138–46.

    Article  PubMed  CAS  Google Scholar 

  78. Patil RY, Patil SA, Chivate ND, Patil YN. Herbal drug nanoparticles: advancements in herbal treatment. Res J Pharm Technol. 2018;11:421–6.

    Article  Google Scholar 

  79. Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol. 2020;8:238.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, et al. Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev. 2021;178:113964.

    Article  PubMed  CAS  Google Scholar 

  81. Sharma M. Applications of nanotechnology-based dosage forms for delivery of herbal drugs. Res Rev J Pharm Nanotechnol. 2014;2:23–30.

    CAS  Google Scholar 

  82. Thapa RK, Khan GM, Parajuli-Baral K, Thapa P. Herbal medicine incorporated nanoparticles: advancements in herbal treatment. Asian J Biomed Pharm Sci. 2013;3:7–14.

    Google Scholar 

  83. Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. Protoplasma. 2020;257:3–12.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis. iScience. 2019;21:308–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lee R, Ko HJ, Kim K, Sohn Y, Min SY, Kim JA, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles. 2020;9:1703480.

    Article  PubMed  CAS  Google Scholar 

  87. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25:1641–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zu M, Song H, Zhang J, Chen Q, Deng S, Canup BSB, et al. Lycium barbarum lipid-based edible nanoparticles protect against experimental colitis. Colloids Surf B Biointerfaces. 2020;187:110747.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24:1783–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867.

    Article  PubMed  Google Scholar 

  93. Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015;4:28713.

    Article  PubMed  Google Scholar 

  94. Kalarikkal SP, Sundaram GM. Edible plant-derived exosomal microRNAs: exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol. 2021;414:115425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Valencia-Sullca C, Jiménez M, Jiménez A, Atarés L, Vargas M, Chiralt A. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym Int. 2016;65:979–87.

    Article  CAS  Google Scholar 

  96. Montenegro L, Pasquinucci L, Zappalà A, Chiechio S, Turnaturi R, Parenti C. Rosemary essential oil-loaded lipid nanoparticles: in vivo topical activity from gel vehicles. Pharmaceutics. 2017;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sadat Khadem F, Es-Haghi A, Homayouni Tabrizi M, Shabestarian H. The loaded Ferula assa-foetida seed essential oil in Solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater Technol. 2022;37:1120–8.

    Article  CAS  Google Scholar 

  98. Azadmanesh R, Tatari M, Asgharzade A, Taghizadeh SF, Shakeri A. GC/MS profiling and biological traits of eucalyptus globulus L. essential oil exposed to solid lipid nanoparticle (SLN). J Essent Oil Bear Plants. 2021;24:863–78.

    Article  CAS  Google Scholar 

  99. Long Q, Xiel Y, Huang Y, Wu Q, Zhang H, Xiong S, et al. Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. J Biomed Nanotechnol. 2013;9:965–75.

    Article  PubMed  CAS  Google Scholar 

  100. Luo H, Zhong Q, Chen LJ, Qi XR, Fu AF, Yang HS, et al. Liposomal honokiol, a promising agent for treatment of cisplatin-resistant human ovarian cancer. J Cancer Res Clin Oncol. 2008;134:937–45.

    Article  PubMed  CAS  Google Scholar 

  101. Kang JH, Ko YT. Enhanced subcellular trafficking of resveratrol using mitochondriotropic liposomes in cancer cells. Pharmaceutics. 2019;11:423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Vijayanand P, Jyothi V, Aditya N, Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: in vivo antidepressant activity. J Drug Deliv. 2018;2018:2908626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: recent advancements, challenges, opportunities and regulatory overview. Phytomedicine. 2022;96:153890.

    Article  PubMed  CAS  Google Scholar 

  104. Ghalehkhondabi V, Soleymani M, Fazlali A. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy. J Drug Deliv Sci Technol. 2021;61:102157.

    Article  CAS  Google Scholar 

  105. Azadi R, Mousavi SE, Kazemi NM, Yousefi-Manesh H, Rezayat SM, Jaafari MR. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol Toxicol. 2021;22:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gao J, Fan K, Jin Y, Zhao L, Wang Q, Tang Y, et al. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci. 2019;140:105070.

    Article  PubMed  CAS  Google Scholar 

  107. Shabana MS, Gani TS, Abdul Majeed S, Ahmed N, Karthika M, Ramasubramanian V, et al. Preparation and evaluation of mesoporous silica nanoparticles loaded quercetin against bacterial infections in Oreochromis niloticus. Aquacult Rep. 2021;21:100808.

    Google Scholar 

  108. He S, Wu L, Li X, Sun H, Xiong T, Liu J, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021;11:2362–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Safdar Ali R, Meng H, Li Z. Zinc-based metal-organic frameworks in drug delivery, cell imaging, and sensing. Molecules. 2021;27:100.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wu Y, Luo Y, Zhou B, Mei L, Wang Q, Zhang B. Porous metal-organic framework (MOF) carrier for incorporation of volatile antimicrobial essential oil. Food Control. 2019;98:174–8.

    Article  CAS  Google Scholar 

  111. Zhang M, Shen W, Jiang Q, Sun Q, Liu Y, Yang Y, et al. Engineering a curcumol-loaded porphyrinic metal-organic framework for enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces. 2022;214:112456.

    Article  PubMed  CAS  Google Scholar 

  112. Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–16.

    Article  CAS  Google Scholar 

  113. Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Current Pathobiology Reports, 2021.

    Google Scholar 

  114. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res. 2020;27:19151–68.

    Article  CAS  Google Scholar 

  115. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12:908–31.

    Article  CAS  Google Scholar 

  116. Prasad M, Lambe UP, Brar B, Shah I, Manimegalai J, Ranjan K, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother. 2018;97:1521–37.

    Article  PubMed  CAS  Google Scholar 

  117. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3:133–49.

    Article  Google Scholar 

  118. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.

    Article  Google Scholar 

  119. Pasut G. Grand challenges in nano-based drug delivery. Front Med Technol. 2019;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hulla J, Sahu S, Hayes A. Nanotechnology: History and future. Hum Exp Toxicol. 2015;34:1318–21.

    Article  PubMed  CAS  Google Scholar 

  121. Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021:9954443.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40:328–46.

    Article  PubMed  CAS  Google Scholar 

  123. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cho YM, Mizuta Y, Akagi JI, Toyoda T, Sone M, Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol. 2018;31:73–80.

    Article  PubMed  CAS  Google Scholar 

  125. Abramenko NB, Demidova TB, Abkhalimov ЕV, Ershov BG, Krysanov EY, Kustov LM. Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater. 2018;347:89–94.

    Article  PubMed  CAS  Google Scholar 

  126. Zhou H, Gong X, Lin H, Chen H, Huang D, Li D, et al. Gold nanoparticles impair autophagy flux through shape-dependent endocytosis and lysosomal dysfunction. J Mater Chem B. 2018;6:8127–36.

    Article  PubMed  CAS  Google Scholar 

  127. Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A, et al. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med. 2019;30:22.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105:11613–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;7:5390–9.

    Article  Google Scholar 

  130. Li W, Zhang X, Hao X, Jie J, Tian B, Zhang X. Shape design of high drug payload nanoparticles for more effective cancer therapy. Chem Commun. 2013;49:10989–91.

    Article  CAS  Google Scholar 

  131. Lippmann M. Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect. 1990;88:311–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–31.

    Article  PubMed  CAS  Google Scholar 

  133. Andersson PO, Lejon C, Ekstrand-Hammarström B, Akfur C, Ahlinder L, Bucht A, et al. Polymorph- and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small. 2011;7:514–23.

    Article  PubMed  CAS  Google Scholar 

  134. Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, et al. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One. 2014;9:e85835.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ. 2012;438:225–32.

    Article  PubMed  CAS  Google Scholar 

  136. Kumar CSSR, Hormes J, Leuschner C. Nanofabrication towards biomedical applications: techniques, tools, applications, and impact. Hoboken, NJ: Wiley; 2005.

    Book  Google Scholar 

  137. Bantz C, Koshkina O, Lang T, Galla HJ, Kirkpatrick CJ, Stauber RH, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5:1774–86.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology. 2011;5:517–30.

    Article  PubMed  CAS  Google Scholar 

  139. Allon I, Ben-Yehudah A, Dekel R, Solbakk JH, Weltring KM, Siegal G. Ethical issues in nanomedicine: tempest in a teapot? Med Health Care Philos. 2017;20:3–11.

    Article  PubMed  Google Scholar 

  140. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Resnik DB. Fair drug prices and the patent system. Health Care Anal. 2004;12(2):91–115.

    Article  PubMed  Google Scholar 

  142. Resnik DB, Tinkle SS. Ethics in nanomedicine. Nanomedicine. 2007;2:345–50.

    Article  PubMed  Google Scholar 

  143. Resnik DB. Developing drugs for the developing world: an economic, legal, moral, and political dilemma. Dev World Bioeth. 2001;1:11–32.

    Article  PubMed  CAS  Google Scholar 

  144. Stein E, Buchanan A, Brock DW, Daniels N, Wikler D. From chance to choice: genetics and justice. Philos Rev. 2002;111:130–132.

    Google Scholar 

  145. Allen DB, Fost N. hGH for short stature: Ethical issues raised by expanded access. J Pediatr. 2004;144(5):648–52.

    Article  PubMed  Google Scholar 

  146. Hafner A, Lovrić J, Lakǒ GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomed. 2014;9:1005–23.

    Google Scholar 

  147. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ehmann F, Sakai-Kato K, Duncan R, Pérez De La Ossa DH, Pita R, Vidal JM, et al. Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines. Nanomedicine. 2013;8:849–56.

    Article  PubMed  CAS  Google Scholar 

  149. Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313:35–56.

    Article  PubMed  CAS  Google Scholar 

  150. Hussaarts L, Mühlebach S, Shah VP, McNeil S, Borchard G, Flühmann B, et al. Equivalence of complex drug products: advances in and challenges for current regulatory frameworks. Ann N Y Acad Sci. 2017;1407:39–49.

    Article  PubMed  Google Scholar 

  151. Mühlebach S. Regulatory challenges of nanomedicines and their follow-on versions: a generic or similar approach? Adv Drug Deliv Rev. 2018;131:122–31.

    Article  PubMed  Google Scholar 

  152. Astier A, Barton Pai A, Bissig M, Crommelin DJA, Flühmann B, Hecq JD, et al. How to select a nanosimilar. Ann N Y Acad Sci. 2017;1407:50–62.

    Article  PubMed  Google Scholar 

  153. Mühlebach S, Borchard G, Yildiz S. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine. 2015;10(4):659–74.

    Article  PubMed  Google Scholar 

  154. Schellekens H, Stegemann S, Weinstein V, De Vlieger JSB, Flühmann B, Mühlebach S, et al. How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: points to consider. AAPS J. 2014;16(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  155. Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater. 2020;19:1362–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeel Masood Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, A.M. et al. (2023). Advantages of Nanomedicine Over Conventional Therapeutics. In: Akhtar, B., Muhammad, F., Sharif, A. (eds) Nanomedicine in Treatment of Diseases. Learning Materials in Biosciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-7626-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7626-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7625-6

  • Online ISBN: 978-981-99-7626-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics