Skip to main content

ROS/Redox Signaling and Apoptosis/Necroptosis/Autophagy in Cancer

  • Chapter
  • First Online:
Redox Regulation and Therapeutic Approaches in Cancer
  • 65 Accesses

Abstract

This chapter entitled “ROS/Redox Signaling and Apoptosis/Necroptosis/Autophagy in Cancer” initially provides a brief account of various programmed cell death (PCD) pathways, e.g., apoptosis, necroptosis, autophagy, and others. Characteristic redox regulatory molecular pathways including specific proteins involved in each PCD pathway have been taken up separately. Each event has been further explained in the context of cancer situations. Specially, PCD resistance, which is considered a hallmark of cancer, has been discussed at the molecular level in various cancerous conditions. Specially, autophagy dual involvement in cancer development has been taken and discussed with the help of ROS and molecular signaling. Further ferroptosis and pyroptosis characteristics have also been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahern TP, Lash TL, Damkier P, Christeiansen PM, Cronin-Fenton DP (2014) Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol 15:e461–e468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhand AA, Du J, Liu W, Hossain K, Miyata T, Nagase F, Kato M, Suzuki H, Nakasima I (2002) Redox-linked cell surface-oriented signalling for T-cell death. Antioxid Redox Signal 4:445–454

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M et al (2010a) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 107:4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander A, Kim J, Walker CL (2010b) ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 6:672–673

    Article  PubMed  Google Scholar 

  • Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJJ (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 60:6101–6110

    CAS  PubMed  Google Scholar 

  • Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. BioMed Res Intl 2014:603980

    Article  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    Article  CAS  PubMed  Google Scholar 

  • Bajt ML, Ho YS, Vonderfecht SL, Jaeschke H (2002) reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis in vivo: studies with glutathione peroxidise-deficient mice. Antioxid Redox Signal 4:733–740

    Article  CAS  PubMed  Google Scholar 

  • Bandoh N, Hayashi T, Kishibe K, Takahara M, Imada M et al (2002) Prognostic value of p53 mutations, bax, and spontaneous apoptosis in maxillary sinus squamous cell carcinoma. Cancer 94:1968–1980

    Article  CAS  PubMed  Google Scholar 

  • Basit F, Cristofanon S, Fulda S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28:3015–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  Google Scholar 

  • Bertrand MJM, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    Article  CAS  PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvarn A et al (2005) p62/SQSTH1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyer-Guittaut M, Poillet L, Liang Q, Bôle-Richard E, Ouyang X, Benavides GA, Chakrama FZ, Fraichard A, Darley-Usmar VM, Despouy G et al (2014) The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 10:986–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahimi-Horn MC, Bellot G, Pouysségur J (2011) Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21:67–72

    Article  CAS  PubMed  Google Scholar 

  • Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta 1777:877–881

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Buchheit CL, Rayavarapu RR, Schafer ZT (2012) The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol 23:402–411

    Article  CAS  PubMed  Google Scholar 

  • Burgess DJ (2013) Apoptosis: refined and lethal. Nat Rev Cancer 13:79

    Article  CAS  PubMed  Google Scholar 

  • Burke PJ (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3:857–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIP ping at the heels of cell death. Cell Death Differ 16:515–523

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY et al (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21:2743–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25:17–26

    Article  CAS  Google Scholar 

  • Cai B, Chang SH, Becker EB, Bonni A, Xia Z (2006) p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65. J Biol Chem 281:25215–25222

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Niu X, Chen Y, Hu Q, Shi G, Wu H, Wang J, Yi J (2008) Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia 10:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65

    Article  CAS  PubMed  Google Scholar 

  • Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao W, Li J, Yang K, Cao D (2021) An overview of autophagy: mechanism, regulation and research progress. Bull Cancer 108:304–322

    Article  PubMed  Google Scholar 

  • Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG et al (2007) Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 110:4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Yu J, Zhang L (2016) Necroptosis: an alternative cell death program defending against cancer. Biochem Biophys Acta 1865:228–236

    CAS  PubMed  Google Scholar 

  • Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y (2017) The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 112:21–30

    Article  PubMed  Google Scholar 

  • Cho Y, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:1845–1846

    Article  CAS  PubMed  Google Scholar 

  • Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 34:434–442

    Article  CAS  PubMed  Google Scholar 

  • Colbert LE, Fisher SB, Hardy CW, Hall WA, Saka B et al (2013) Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119:3148–3155

    Article  CAS  PubMed  Google Scholar 

  • Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114

    Article  CAS  PubMed  Google Scholar 

  • Cordani M, Donadelli M, Strippoli R, Bazhin AV, Sanchez-Alvarez M (2019) Interplay between ROS and autophagy in cancer and aging: from molecular mechanisms to novel therapeutic approaches. Oxidative Med Cell Longev 2019:8794612

    Article  Google Scholar 

  • Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y et al (2019) MST1 suppresses pancreatic cancer progression via ROS-induced pyroptosis. Mol Cancer Res 17:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • Dang TP (2012) Notch, apoptosis and cancer. Adv Exp Med Biol 727:199–209

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  • Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signaling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40:85–96

    Article  CAS  PubMed  Google Scholar 

  • De Raedt T, Walton Z, Yecies J, Li D, Chen Y et al (2011) Exploiting cancer cell vulnerabilities to develop a combination therapy for Ras-driven tumors. Cancer Cell 20:400–413

    Article  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath J (2011) The multifaceted roles of autophagy in tumors-implications for breast cancer. J Mammary Gland Biol Neoplasia 16:173–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh M, Kuida K, Johnson EMJ (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewaele M, Maes H, Agostinis P (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6:838–854

    Article  CAS  PubMed  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  • Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P et al (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277:150–157

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S et al (2008) Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab 8:425–436

    Article  CAS  PubMed  Google Scholar 

  • Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorstyn L, Akey CW, Kumar S (2018) New insights into apoptosome structure and function. Cell Death Differ 25:1194–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop EA, Tee AR (2014) mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 36C:121–129

    Article  Google Scholar 

  • Duprez LE, Wirawan TV, Berghe TV, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11:1050–1062

    Article  CAS  PubMed  Google Scholar 

  • Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T et al (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  CAS  PubMed  Google Scholar 

  • EI Hout M, Dos Santos L, Hamali A, Mehrpour M (2018) A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin Cancer Biol 53:125–138

    Article  Google Scholar 

  • Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T et al (2020) Pyroptosis: a new frontier in cancer. Biomed Pharmacother 121:109595

    Article  CAS  PubMed  Google Scholar 

  • Farina AR, Tacconelli A, Cappabianca L, Masciulli MP, Holmgren A, Beckett GJ et al (2001) Thioredoxin alters the matrix metalloproteinase/tissue inhibitors of metalloproteinase balance and stimulates human SK-N-SH neuroblastoma cell invasion. Eur J Biochem 268:405–413

    Article  CAS  PubMed  Google Scholar 

  • Fearnhead HO, Vandenabeele P, Vanden TB (2017) How do we fit ferroptosis in the family of regulated cell death? Cell Death Diiffer 24:1991–1998

    Article  CAS  Google Scholar 

  • Feng D, Liu L, Zhu Y, Chen Q (2013) Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res 319:1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Checa JC (2003) Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 304:471–479

    Article  CAS  PubMed  Google Scholar 

  • Filomeni G, Ciriolo MR (2006) Redox control of apoptosis: an update. Antioxid Redox Signal 8:2187–2191

    Article  CAS  PubMed  Google Scholar 

  • Florey O, Kim SE, Overholizer M (2015) Entosis: cell-in-cell formation that kills through entotic cell death. Curr Mol Med 15:861–866

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z et al (2013) The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 13:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010:370835. 6 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulda S (2013) The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther 14:999–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galán A, García-Bermejo L, Troyano A, Vilaboa NE, Fernandez C et al (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol 80:312–320

    Article  PubMed  Google Scholar 

  • Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159:1263–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Piettrocola F, Bravo San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferring regulate ferroptosis. Mol Cell 59:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garva R, Thepmalee C, Yasamut U, Sudsaward S, Guazzelli A, Rajendran R et al (2019) Sirtuin family members selectively regulate autophagy in osteosarcom and mesothelioma cells in response to cellular stress. Front Oncol 9:949. 14 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Gervais JL, Seth P, Zhang H (1998) Cleavage of CDK inhibitor p21(Cip1/Waf1) by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem 273:19207–19212

    Article  CAS  PubMed  Google Scholar 

  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M et al (2005) Electron transfer between chytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233

    Article  CAS  PubMed  Google Scholar 

  • Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20:5680–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Guo JY, Chen HY, Methew R, Fan J, Strohecker AM, Karsli-Uzumbas G et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CH, Hsia S, Shih MY, Hsieh FC, Chen PC (2015) Effects of selenium yeast on oxidative stress, growth inhibition and apoptosis in human breast cancer cell. Int J Med Sci 12:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Gupta N, Fofaria NM, Ranjan A, Srivastava SK (2019) HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett 442:68–81

    Article  CAS  PubMed  Google Scholar 

  • Gwangwa MV, Joubert AM, Visagie MH (2018) Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumorigenesis. Cell Mol Biol Lett 23:20. 19 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y et al (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Ann Rev Genet 43:67–93

    Article  CAS  PubMed  Google Scholar 

  • He S, Wang L, Miao L, Du F, Zhao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • He L, Peng K, Liu Y, Xiong J, Zhu FF (2013) Low expression of mixed lineage kinase domain –like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther 6:1539–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Dong L, Luo L, Wang (2023) Redox regulation of autophagy in cancer: mechanism, prevention and therapy. Life 13:98. 21 pages

    Article  CAS  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S et al (2016) RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30:75–91

    Article  PubMed  Google Scholar 

  • Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582

    Article  CAS  PubMed  Google Scholar 

  • Hsu SK, Chang WT, Lin IL, Chen YF, Padalwar NB, Cheng KC et al (2020) The role of necroptosis in ROS-Mediated cancer therapies and its promising applications. Cancers (Basel) 12:2185. 23 pages

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Xiao T, He L, Ji H, Liu XY (2012) Interferon-β-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells. Acta Biochim Biophys Sinica 44:737–745

    Article  CAS  Google Scholar 

  • Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244

    Article  CAS  PubMed Central  Google Scholar 

  • Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE Syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Jacks T, Weinberg RA (1996) Cell-cycle control and its watchman. Nature 381:643–644

    Article  CAS  PubMed  Google Scholar 

  • Jazirehi AR (2010) Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anti-Cancer Drugs 21:805–813

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouan-Lanhouet S, Arshad M, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F et al (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouan-Lanhouet S, Riquet F, Duprez L, Berghe TV, Takahashi N, Vandenabeele P (2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 35:2–13

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabore AF, Johnston JB, Gibson SB (2004) Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targets 4:147–163

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarck A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  • Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:46–55

    Article  CAS  PubMed  Google Scholar 

  • Kandala PK, Srivastava SK (2012) Diindolylmethane-mediated Gli1 protein suppression induces anoikis in ovarian cancer cells in vitro and blocks tumor formation ability in vivo. J Biol Chem 287:28745–28754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Zhang Q, Zeh HJ III, Lotze MT, Tang D (2013) HMGB1 in cancer: good, bad, or both? Clin Cancer Res 19:4046–4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Bang BR, Han KH, Hong L, Shim EJ et al (2015) Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signaling. Nat Commun 6:8371. 15 pages

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q et al (2018) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R et al (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri K, Matsuzawa A, Ichijo H (2010) Regulation of apoptosis signal-regulating kinase 1 in redox signaling. Methods Enzymol 474:277–288

    Article  CAS  PubMed  Google Scholar 

  • Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T et al (2007) Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One 2:e1058

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawano Y, Fujiwara S, Kikukawa Y, Okuno Y, Mitsuya H, Hata HA (2013) Small molecule, shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells. Blood 122:3172–3172

    Article  Google Scholar 

  • Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S et al (2015) Caspase-11 Cleaves Gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M, Kuroki S, Kayama M, Sakaguchi S, Lee KK, Yonehara S (2012) Protease activity of procaspase-8 is essential for cell survival by inhibiting both apoptotic and nonapoptotic cell death dependent on receptor-interacting protein kinase 1(RIP1) and RIP3. J Biol Chem 287:4165–4173

    Article  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Morgan MJ, Choksi S, Liu ZG (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Srivastava SK, Kim SH (2015) Caspase-9 as a therapeutic target for treating cancer. Expert Opin Ther Targets 19:113–127

    Article  CAS  PubMed  Google Scholar 

  • Kiraz Y, Adan A, Kartal Yandim M, Baran Y (2016) Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 37:8471–8486

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    Article  CAS  PubMed  Google Scholar 

  • Kongara S, Karantza V (2012) The interplay between autophagy and ROS in tumorigenesis. Front Oncol 21:1–13

    Google Scholar 

  • Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH et al (2015) Methylation-dependent loss of RP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:707–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer. Cancer Discov 11:245–265

    Article  CAS  PubMed  Google Scholar 

  • Korner I, Weber-Nordt R, Pfaff P, Finke J (1997) Analysis of a regulatory element in the 5′-untranslated region of the bcl-2 gene. FEBS Lett 406:31–32

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Herbert PE, Warrens AN (2005) An introduction to death receptors in apoptosis. Int J Surg 3:268–277

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    Article  CAS  PubMed  Google Scholar 

  • Lalaoui N, Brumatti G (2017) Relevance of necroptosis in cancer. Immunol Cancer Biol 95:137–145

    Article  CAS  Google Scholar 

  • Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG (2015) The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol 39:63–69

    Article  CAS  PubMed  Google Scholar 

  • Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta 1861:1863–1900

    Google Scholar 

  • Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T et al (2010) Anoncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Yao CF, Huang SM, Ko S, Tan YH et al (2008) Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl) cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 113:815–825

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Rhee JG, Lee YJ (2009) Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis combined treatment with TRAIL and wogonin. Br J Pharmacol 157:1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 441:523–540

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100:2432–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW et al (2013) The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18:6027–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  CAS  PubMed  Google Scholar 

  • Li D, Ueta E, Kimura T, Yamamoto T, Osaki T (2004a) Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 95:644–650

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Corradetti MN, Inoki K, Guan KL (2004b) TSC2: Filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29:32–38

    Article  PubMed  Google Scholar 

  • Li N, He Y, Wang L, Mo C, Zhang J, Zhang W et al (2011) D-galactose induces necroptotic cell death in neuroblastoma cell lines. J Cell Biochem 112:3834–3844

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ishdorj G, Gibson SB (2012) Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 53:1399–1410

    Article  CAS  PubMed  Google Scholar 

  • Li L, Tan J, Miao Y, Lei P, Zhang Q (2015) ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35:615–621

    Article  PubMed  Google Scholar 

  • Lin Y, Jiang M, Chen W, Zhao T, Wei Y (2019) Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 2019:118

    Google Scholar 

  • Lincoln DT, Eli Emadi EM, Tonissen KF, Clarke FM (2003) The thioredoxin–thioredoxin reductase system: over-expression in human cancer. Anticancer Res 23:2425–2434

    CAS  PubMed  Google Scholar 

  • Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Xu B, Shen W, Zhu H, Wu W, Fu Y et al (2011) Dysregulation of TNFα-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 26:1293–1300

    Article  PubMed  Google Scholar 

  • Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H et al (2016a) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhou M, Mei L, Ruan J, Hu Q et al (2016b) Key roles of necroptotic factors in promoting tumor growth. Oncotarget 7:22219–22233

    Article  PubMed  PubMed Central  Google Scholar 

  • Livine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su E, Salas E et al (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lock R, Kenific CM, Leidal AM, Salas E, Debnath J (2014) Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 4:466–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long J, Ryan K (2012) New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 31:5045–5060

    Article  CAS  PubMed  Google Scholar 

  • Luanpitpong S, Chanvorachote P, Nimmannit U, Leonard SS, Stehlik C, Wang L et al (2012) Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem Pharmacol 83:1643–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L, Rojanasakul Y (2013) Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell 24:858–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magtanong L, Ko PJ, Dixon SJ (2016) Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ 23:1099–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti PM, Castedo SA, Susin N, Zamzami T, Hirsch A et al (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Henry CM, Cullen SP (2012) A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46:387–397

    Article  CAS  PubMed  Google Scholar 

  • Maslon MM, Hupp TR (2010) Drug discovery and mutant p53. Trends Cell Biol 20:542–555

    Article  CAS  PubMed  Google Scholar 

  • Mathew R, Karantza-Wadsworth V, White E (2007a) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K et al (2007b) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazure NM, Pouyssegur J (2010) Hypoxia induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22:177–180

    Article  CAS  PubMed  Google Scholar 

  • McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al (1989) bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79–88

    Article  CAS  PubMed  Google Scholar 

  • McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (2005) H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary anti-oxidant responsive factor. EMBO J 12:2005–2015

    Article  Google Scholar 

  • Meynier S, Rieux-Laucat F (2019) FAS and RAS related apoptosis defects: from autoimmunity to leukemia. Immunol Rev 287:50–61

    Article  CAS  PubMed  Google Scholar 

  • Minchenko OH, Tsymbal DO, Minchenko DO, Ratushna OO (2016) The role of the TNF receptors and apoptosis inducing ligands in tumor growth. Ukrainian Biochem J 88:18–37

    Article  CAS  Google Scholar 

  • Mittal D, Saccheri F, Venereau E, Pusterla T, Marco P et al (2010) TLR4-mediated skin carcinogenesis is dependent on immune and radio resistant cells. EMBO J 29:2242–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Fujibuchi W, Ishida K, Naitoh T, Ogawa H et al (2011) Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today 41:175–182

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo et al (2009) Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 1793:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M et al (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14:2251–2269

    Article  CAS  PubMed  Google Scholar 

  • Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12:34. 16 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasaka A, Kawane K, Yoshida H, Nagata S (2010) Apaf-1-independent programmed cell death in mouse development. Cell Death Differ 17:931–941

    Article  CAS  PubMed  Google Scholar 

  • Nagekerke A, Sweep FCGJ, Geurts-Moespot A, Bussink J, Span PN (2014) Therapeutic targeting of autophagy in cancer. Part 1: molecular pathways controlling autophagy. Semin Cancer Biol 16:26–36

    Google Scholar 

  • Najjar M, Saleh D, Zelic M, Nogusa S, Shah S et al (2016) RIPK1 and RIPK3 kinases promote cell-death –independent inflammation by toll-like receptor 4. Immunity 45:46–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Yoshimori T (2018) Autophagy and longevity. Mol Cells 41:65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima I, Suzuki H, Kato M, Akhand AA (2002) Redox control of T-cell death. Antioxid Redox Signal 4:353–356

    Article  CAS  PubMed  Google Scholar 

  • NavaneethaKrishnan S, Rosales JL, Lee KY (2018) Loss of Cdk5 in breast cancer cells promotes ROS-mediated cell death through dysregulation of the mitochondrial permeability transition pore. Oncogene 37:1788–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21:66–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  • Newton K, Manning G (2016) Necroptosiss and inflammation. Annu Rev Biochem 85:743–763

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Torres JL, Leidal AM, Debnath J, Hansen M (2021) Beyond autophagy: the expanding roles of ATG8 proteins. Trends Biochem Sci 46:673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287:9873–9886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niture SK, Jaiswal AK (2013) Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic Biol Med 57:119–131

    Article  CAS  PubMed  Google Scholar 

  • Novak I (2012) Mitophagy: a complex mechanism of mitochondrial removal. Antioxid Redox Signal 17:794–802

    Article  CAS  PubMed  Google Scholar 

  • Nugues AL, Bouazzati HE, Hetuin D, Berthon C, Loyens A (2014) RIP3 is down-regulated in human myeloid leukemia cells and modulates apoptosis and caspase-mediated p65/RelA cleavage. Cell Death Dis 5:e1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signaling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Pan JS, Hong MZ, Ren JL (2009) Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 15:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos K (2006) Targeting the Bcl-2 family in cancer therapy. Semin Oncol (Elsevier) 33:449–456

    Article  CAS  Google Scholar 

  • Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15:1572–1581

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti N, Leon L, Carraway KL, Gorin F (2013) 5-Benzylglycinyl-amiloride kills proliferating and nonproliferating malignant glioma cells through caspase-independent necroptosis mediated by apoptosis-inducing factor. J Pharmacol Exp Ther 344:600–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  CAS  PubMed  Google Scholar 

  • Pena JC, Rudin CM, Thompson CB (1998) A Bcl-xL transgene promotes malignant conversion of chemically initiated skin papillomas. Cancer Res 58:2111–2116

    CAS  PubMed  Google Scholar 

  • Philipp S, Sosna J, Adam D (2016) Cancer and necroptosis: friend or foe? Cell Mol Life 73:2183–2193

    Article  CAS  Google Scholar 

  • Plati J, Bucur O, Khosravi-Far R (2008) Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem 104:1124–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Oblong JE, Gasdaska PY, Berggren M, Hill SR, Kirkpatrick DL (1994) The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res 6:539–544

    CAS  PubMed  Google Scholar 

  • Price R, Vugt MV, Nosten F, Luxemburger C, Brockman A, Phaipun L, Chongsuphajansiddhi T, White N (1998) Artesunate versus artemether for the treatment of recrudescent multidrug resistant Plasmodium falciparum malaria. Am J Trop Med 59:883–888

    Article  CAS  Google Scholar 

  • Qi XJ, Wildey GM, Howe PH (2006) Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. J Biol Chem 281:813–823

    Article  CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5:3056–3070

    Article  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signaling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  CAS  PubMed  Google Scholar 

  • Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2014) Glutathione and mitochondria. Front Pharm 5:151

    Article  Google Scholar 

  • Ribeiro IR, Ollario P (1998) Safety of artemisinin and its derivatives, A review of published and unpublished clinical trials. Med Trop (Mars) 58:50–53

    CAS  PubMed  Google Scholar 

  • Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J et al (2014) BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Res 20:1965

    CAS  Google Scholar 

  • Roberts DL, Goping IS, Bleackley RC (2003) Mitochondria at the heart of the cytotoxic attack. Biochem Biophys Res Commun 304:513–518

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Fnriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 36:2463–2472

    Article  Google Scholar 

  • Rodríguez-Vargas JM, Oliver-Pozo FJ, Dantzer F (2019) PARP1 and Poly (ADP-ribosyl) ation signaling during autophagy in response to nutrient deprivation. Oxidative Med Cell Longev 2019:2641712

    Article  Google Scholar 

  • Rosenfeldt MT, Ryan KM (2009) The role of autophagy in tumor development and cancer therapy. Expert Rev Mol Med 11:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouschop KM, Ramaekers CHMA, Schaaf MBE, Keulers TGH, Keulers TGH, Savelkouls GM, Lambin P. et al(2009) Autophagy is required during hypoxia to lower production of reactive oxygen species. Radiother Oncol 92:411–416

    Article  CAS  PubMed  Google Scholar 

  • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120:127–141

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Sarkar S, Felty Q (2006) Levels of IL-1beta control stimulatory/inhibitory growth of cancer cells. Front Biosci 11:889–898

    Article  CAS  PubMed  Google Scholar 

  • Safa AR (2012) c-FLIP, a master anti-apoptotic regulator. Exp Oncol 34:176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt MB, Bandypadhyay S, Mccormick F (2014) Epithelial –to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov 4:186–199

    Article  CAS  PubMed  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT et al (2008) Essential role for nix in autophagic maturation of erythroid cells. Nature 454:232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangiuliano B, Pérez NM, Moreira DF, Belizário JE (2014) Cell death-associated molecular-pattern molecules: inflammatory signaling and control. Mediat Inflamm 2014:821043. 14 pages

    Article  Google Scholar 

  • Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E, DiPaola RS (2016) Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev 30:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  • Scerz-Shouval R, Shvets E, Fass E, Shorter H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  Google Scholar 

  • Schenk B, Fulda S (2015) Reactive oxygen species regulates Smac mimetic/TNFα-induced signaling and cell death. Oncogene 19:5796–5806

    Article  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    Article  CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38

    Article  CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Shvets E, Elazar Z (2007) Oxidation as a post-translational modification that regulates autophagy. Autophagy 3:371–373

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SV, Seibert S, Walch-Ruckheim B, Vicinus B, Kamionka EM et al (2015) RIPK3 expression in cervical cancer cells is required for PolylC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation. Oncotarget 6:8635–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12:3095–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweers RL, Zhang J, Rabdall MS, Loyd MR, Li W et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Nat Acad Sci U S A 104:19500–19505

    Article  CAS  Google Scholar 

  • Seifert L, Webra G, Tiwari S, Ly NNG, Alothman S et al (2016) The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532:245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang L, Ding W, Li N, Liao L, Chen D, Huang J et al (2017) The effects and regulatory mechanism of RIP3 on RGC-5 necroptosis following elevated hydrostatic pressure. Acta Biochim Biophys Sinica 49:128–137

    Article  CAS  Google Scholar 

  • Shao L, Diccianni MB, Tanaka T, Gribi R, Yu L et al (2001) Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication. Cancer Res 61:7333–7338

    CAS  PubMed  Google Scholar 

  • Shen S, Kepp O, Kroemer G (2012) The end of autophagic cell death? Autophagy 8:1–3

    Article  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderberg A, Sahaf B, Rosen A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res 60:2281–2289

    CAS  PubMed  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz P (2007) Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol 17:13–18

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Cory S (1991) bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67:889–899

    Article  CAS  PubMed  Google Scholar 

  • Strilic B, Yang L, Albarran-Juarez J, Wachsmuth L, Han K et al (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536:215–218

    Article  CAS  PubMed  Google Scholar 

  • Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GM et al (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–1285

    Article  CAS  PubMed  Google Scholar 

  • Su L, Quade B, Wang H, Sun L, Wang X, Rizo L (2014) A plug release mechanism for membrane permeation by MLKL. Structure 22:1489–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis and cancer metastasis. Mol Cancer 14:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimura T (1998) A new concept of co-mutagenicity from a phenomenon forgotten for the past two decades: is it more important than previously expected? Environ Health Perspect 106:A522–A523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui X, Chen R, Wang Z, Huang Z, Kong N et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Karin M (2013) Inflammation and liver tumorigenesis. Front Med 7:242–254

    Article  PubMed  Google Scholar 

  • Taguchi K, Fujikawa N, Komatsu M, Yamamoto M (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Nat Acad Sci U S A 109:13561–13566

    Article  CAS  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Matsuzawa A, Nishitoh H, Ichijo H (2003) Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 28:23–29

    Article  CAS  PubMed  Google Scholar 

  • Takemura R, Takaki H, Okada S, Shime H, Akazawa T et al (2015) Poly1:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol Res 3:902–914

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Livesev KM, Zeh HJ, Lotze MT (2011) High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal 15:2185–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods Mol Biol 445:77–88

    Article  CAS  PubMed  Google Scholar 

  • Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26:2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Chuang CC, Wu S (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25

    Article  CAS  PubMed  Google Scholar 

  • Tonissen KF, Trapani GD (2009) Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 53:87–103

    Article  CAS  PubMed  Google Scholar 

  • Tormo D, Checińska A, Alonso-Curbelo D, Perez-Guijarro E, Carion E et al (2009) Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschopp J, Martinon F, Hofmann K (1999) Apoptosis: silencing the death receptors. Curr Biol 9:R381–R384

    Article  CAS  PubMed  Google Scholar 

  • Ueda S, Nakamura H, Masutani H, Sasada T, Yonehara S, Takabayashi A et al (1998) Redox regulation of caspase-3 (-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol 161:6689–6695

    Article  CAS  PubMed  Google Scholar 

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzim L, Vandenm Berghem T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  • VandenBerghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  Google Scholar 

  • VandeWalle L, Wirawan E, Lamkanfi M, Festjens N, Verspurten J et al (2010) The mitochondrial serine protease HtrA2/Omi cleaves RIP1 during apoptosis of Ba/F3 cells induced by growth factor withdrawal. Cell Res 20:421–433

    Article  CAS  Google Scholar 

  • Vanlangenakker N, Berghe TV, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19:75–86

    Article  CAS  PubMed  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) P53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Tursz T (1990) Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A 87:8282–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884

    Article  CAS  Google Scholar 

  • Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008a) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65:3640–3652

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH, Rojanasakul Y (2008b) The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072–3080

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM (2009) Cadmium toxicity toward autophagy through ROS-Activated GSK-3b in mesangial cells. Toxicol Sci 108:124–131

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun L, Su L, Rizo L, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Jin Y, Yang W, Zhang L, Jin X, Liu X, He Y, Li X (2017) Necroptosis in cancer: an angel or a demon? Tumor Biol 2017:39. 11 pages

    Google Scholar 

  • Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107:8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh S, Bellamy W, Briehl M, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089–5095

    CAS  PubMed  Google Scholar 

  • Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V et al (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  CAS  PubMed  Google Scholar 

  • White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46

    Article  PubMed  PubMed Central  Google Scholar 

  • White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkie-Grantham RP, Matsuzawa S, Reed JC (2013) Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein. J. Biol Chem 288:12777–12790

    Article  CAS  Google Scholar 

  • Wong GH, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242:941–944

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Huang Z, Ren J, Zhang Z, He P et al (2013) MLKL knockout mice demonstrate the indispensable role of MLKL in necroptosis. Cell Res 23:994–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Koh JY, Price S, White E, Mehnert JM (2015) Atg7 overcomes senescence and prpmotes growth of BrafV600E-driven melanoma. Cancer Discov 5:410–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Mu T, Wang G, Jiang X (2014) Mitochondria –mediated apoptosis in mammals. Protein Cell 5:737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YC, Wu RF, Gu Y, Yang YS, Yang MC et al (2002) Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 277:28051–28057

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Qin Z, Ma J, Cao W, Zhang P (2020) Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur J Pharmacol 880:173198

    Article  CAS  PubMed  Google Scholar 

  • Yagoda N, Von RM, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashima T, Oikawa S (2009) The role of lysosomal rupture in neuronal death. Prog Neurobiol 89:343–358

    Article  CAS  PubMed  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2016) Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26:165–176

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wang Y, Zhang Y, He X, Zhong CQ, Ni H et al (2018) RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 20:186–197

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liu PY, Bao W, Chen SJ, Wu FS, Zhu PY (2020) Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer 20:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Miki Y (2010) The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 101:831–835

    Article  CAS  PubMed  Google Scholar 

  • You H, Yamamoto K, Mak TW (2006) Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci U S A 103:9051–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ. et al(2002) Mediation of poly (ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A 103:4952–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Guo P, Xie X, Wang Y, Chen G (2017) Ferroptosis, a new form of cell death and its relationships with tumourous diseases. J Cell Mol Med 21:648–657

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Al-Lamki R, Bai L, Streb JW, Miano JM, Bradley J, Min W (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94:1483–1491

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH et al (2008a) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008b) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Zhang D-W, Shao J, Lin J, Zhang N, Lu B-J, Lin S-C et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al (2010) Circulating mitochondrial damps cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xu L, Zhang F, Vlashi E (2016) Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle 16:737–745

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X et al (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Lu Y, Shen HM (2012) Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 314:8–23

    Article  CAS  PubMed  Google Scholar 

  • Zhao YG, Chen Y, Miao G, Zhao H, Qu W, Li D et al (2017) The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol Cell 67:974–989

    Article  CAS  PubMed  Google Scholar 

  • Zhao YG, Codogno P, Zhang H (2021) Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 22:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Yazd A, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Wu Z, Du W, Que H, Wang Y, Ouyang Q et al (2022) Recycling of autophagosomal components from autolysosomes by the recycler complex. Nature 24:97–512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M.P. (2023). ROS/Redox Signaling and Apoptosis/Necroptosis/Autophagy in Cancer. In: Redox Regulation and Therapeutic Approaches in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-7342-2_4

Download citation

Publish with us

Policies and ethics