Skip to main content

Flexible and Embedded 3D-Printed Electronic Subsystems in Healthcare Products

  • Chapter
  • First Online:
Digital Design and Manufacturing of Medical Devices and Systems

Abstract

3D-printed electronic subsystems can help healthcare product manufacturers create better more customized products at a lower cost and faster speed. This can ultimately lead to improved patient outcomes and better healthcare overall. This is due to the features such as customization, faster prototyping, and improved functionality. Electronics and 3D printing work together to create new possibilities for creating specialized and individual medical equipment. An introduction to the fundamental concepts of electronics and 3D printing, including the many varieties of substances and printing techniques, follows at the beginning of the chapter. The necessity for specific tools and knowledge is then discussed, along with the potential and problems of incorporating semiconductors into 3D-printed structures. The uses of flexible and embedded 3D-printed electronic subsystems in healthcare items, such as medical implants, wearable technology, and sensors, are discussed in this chapter. A review of the prospects for flexible and incorporated 3D-printed electronics subsystems in healthcare items rounds off the chapter. This covers the potential for novel and cutting-edge products as well as the difficulties in expanding manufacturing and incorporating these items into current healthcare systems. This chapter gives a thorough review of the rapidly developing field of flexible and integrated 3D printing technology electronic subsystems in medical items and how it can change the healthcare sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreoni G et al (2007) Human machine interface for healthcare and rehabilitation. In: Advanced computational intelligence paradigms in healthcare-2. Springer, pp 131–150

    Chapter  Google Scholar 

  • Azahar AM et al (2022) Recent advances in 3D printing of biomedical sensing devices. Adv Funct Mater 32(9):2107671

    Article  Google Scholar 

  • Buga CP, Viana JC (2022) The role of printed electronics and related technologies in the development of smart connected products. Flexible Print Electron 7:043001

    Article  Google Scholar 

  • Caironi M, Noh Y-Y (2015) Large area and flexible electronics. John Wiley & Sons

    Book  Google Scholar 

  • Chandrasekaran S et al (2022) A comprehensive review on printed electronics: a technology drift towards a sustainable future. Nanomaterials 12(23):4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2019) Materials chemistry in flexible electronics. Chem Soc Rev 48(6):1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Chiulan I et al (2017) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Consoli D, Mina A (2009) An evolutionary perspective on health innovation systems. J Evol Econ 19:297–319

    Article  Google Scholar 

  • Corzo D, Tostado-Blázquez G, Baran D (2020) Flexible electronics: status, challenges and opportunities. Front Electron 1:594003

    Article  Google Scholar 

  • Espalin D et al (2014) 3D printing multifunctionality: structures with electronics. Int J Adv Manuf Technol 72:963

    Article  Google Scholar 

  • Espera AH et al (2019) 3D-printing and advanced manufacturing for electronics. Progress Addit Manuf 4:245–267

    Article  Google Scholar 

  • Espera AH et al (2022) Advancing flexible electronics and additive manufacturing. Jpn J Appl Phys 61:SE0803

    Article  Google Scholar 

  • Gao W et al (2019) Flexible electronics toward wearable sensing. Acc Chem Res 52(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • Gu Z et al (2020) Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci 15(5):529–557

    Article  PubMed  Google Scholar 

  • Heng W, Solomon S, Gao W (2022) Flexible electronics and devices as human–machine interfaces for medical robotics. Adv Mater 34(16):2107902

    Article  CAS  Google Scholar 

  • Karahoca A, Karahoca D, Aksöz M (2018) Examining intention to adopt to internet of things in healthcare technology products. Kybernetes 47(4):742–770

    Article  Google Scholar 

  • Khan Y et al (2020) A new frontier of printed electronics: flexible hybrid electronics. Adv Mater 32(15):1905279

    Article  CAS  Google Scholar 

  • Kumar P et al (2021) 3D printing technology for biomedical practice: a review. J Mater Eng Perform 30(7):5342–5355

    Article  CAS  Google Scholar 

  • Li J et al (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep 140:100543

    Article  Google Scholar 

  • Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2019) Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 207:297–316

    Article  CAS  PubMed  Google Scholar 

  • Liu K et al (2022) Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flexible Electron 6(1):1

    Article  Google Scholar 

  • Luo Y et al (2020) Devising materials manufacturing toward lab-to-fab translation of flexible electronics. Adv Mater 32(37):2001903

    Article  CAS  Google Scholar 

  • Ma Y et al (2020) Flexible hybrid electronics for digital healthcare. Adv Mater 32(15):1902062

    Article  CAS  Google Scholar 

  • Mpofu TP, Mawere C, Mukosera M (2014) The impact and application of 3D printing technology. Int J Sci Res 3:358

    Google Scholar 

  • Murphy SV, De Coppi P, Atala A (2020) Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 4(4):370–380

    Article  PubMed  Google Scholar 

  • Norcio AF, Stanley J (1989) Adaptive human-computer interfaces: a literature survey and perspective. IEEE Trans Syst Man Cybern 19(2):399–408

    Article  Google Scholar 

  • Ortiz-Acosta D, Moore T (2019) Functional 3D printed polymeric materials. Funct Mater 9:1–5

    Google Scholar 

  • Palo M et al (2017) 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev Med Devices 14(9):685–696

    Article  CAS  PubMed  Google Scholar 

  • Park Y-G et al (2022) High-resolution 3D printing for electronics. Adv Sci 9(8):2104623

    Article  Google Scholar 

  • Patel VL, Kushniruk AW (1998) Interface design for health care environments: the role of cognitive science. In: Proceedings of the AMIA symposium. American Medical Informatics Association

    Google Scholar 

  • Persad J, Rocke S (2022) A survey of 3D printing technologies as applied to printed electronics. IEEE Access 10:27289–27319

    Article  Google Scholar 

  • Pravin S, Sudhir A (2018) Integration of 3D printing with dosage forms: a new perspective for modern healthcare. Biomed Pharmacother 107:146–154

    Article  CAS  PubMed  Google Scholar 

  • Rao CH et al (2022) A review on printed electronics with digital 3D printing: fabrication techniques, materials, challenges and future opportunities. J Electron Mater 51(6):2747–2765

    Article  CAS  Google Scholar 

  • Righini GC et al (2021) From flexible electronics to flexible photonics: a brief overview. Opt Mater 115:111011

    Article  CAS  Google Scholar 

  • Seider WD et al (2009) Perspectives on chemical product and process design. Comput Chem Eng 33(5):930–935

    Article  CAS  Google Scholar 

  • Sharma A et al (2021) Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules 26(3):748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh T, Kumar S, Sehgal S (2020) 3D printing of engineering materials: a state of the art review. Mater Today Proc 28:1927–1931

    Article  CAS  Google Scholar 

  • Tan HW et al (2022) 3D printed electronics: processes, materials and future trends. Prog Mater Sci 127:100945

    Article  CAS  Google Scholar 

  • Wang X, Liu J (2016) Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7(12):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P et al (2020) The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv Sci 7(20):2001116

    Article  CAS  Google Scholar 

  • Wang Z et al (2022) Advanced materials for flexible electronics. Mater Technol 37(12):1969–1970

    Article  CAS  Google Scholar 

  • Wiegard R-B, Breitner MH (2019) Smart services in healthcare: a risk-benefit-analysis of pay-as-you-live services from customer perspective in Germany. Electron Mark 29:107–123

    Article  Google Scholar 

  • Winters JM, Wang Y, Winters JM (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22(3):56–65

    Article  PubMed  Google Scholar 

  • WoÅ‚czowski A, KurzyÅ„ski M (2010) Human–machine interface in bioprosthesis control using EMG signal classification. Expert Syst 27(1):53–70

    Article  Google Scholar 

  • Wong WS, Salleo A (eds) (2009) Flexible electronics: materials and applications, vol 11. Springer Science & Business Media

    Google Scholar 

  • Wu Y et al (2021) Piezoelectric materials for flexible and wearable electronics: a review. Mater Des 211:110164

    Article  CAS  Google Scholar 

  • Xu J, Fang Y, Chen J (2021) Wearable biosensors for non-invasive sweat diagnostics. Biosensors 11(8):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang Y et al (2015) Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horizons 2(2):140–156

    Article  CAS  Google Scholar 

  • Zhang L et al (2022) Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 10(37):7473–7490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G.S.D.B. is grateful to the Management of Chettinad College of Engineering and Technology, Karur, for constant support and encouragement. S.N. and K.G. acknowledge the Management of Chettinad Academy of Research and Education (ChARE), Chennai, for their continuous support. C.D. acknowledges the Management of Mahendra Engineering College (Autonomous), Namakkal, for encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babu, G.S.D., Nagaraj, S., Girigoswami, K., Dhavamani, C., Mosleh, A.O. (2023). Flexible and Embedded 3D-Printed Electronic Subsystems in Healthcare Products. In: Velu, R., Subburaj, K., Subramaniyan, A.K. (eds) Digital Design and Manufacturing of Medical Devices and Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-7100-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7100-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7099-5

  • Online ISBN: 978-981-99-7100-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics