Skip to main content

Lever: Making Intensive Validation Practical on Blockchain

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2023)

Abstract

Blockchain heralds the dawn of decentralized applications that coordinate proper computations without the need for prior trust. Existing blockchain solutions, however, are incapable of dealing with intensive validation. Duplicated execution leads to limited throughput and unacceptable expenses. Furthermore, the absence of secure incentive mechanisms derives undesired dilemmas among rational verifiers. This work presents Lever, the first off-chain solution that makes intensive validation cost-efficient and scalable among rational verifiers. To achieve the best scalability, Lever curtails the scale of each validation to a single node and introduces novel challenge-response games between potential adversaries and rational stakeholders, optimizing validation redundancy according to the practical adversarial capability confronted. Meanwhile, compelling incentive design efficiently transfers adversary collateral to specialized rewards for honest participants, therefore allowing the user to lever sufficient endorsement with minimum cost. A backstop protocol is designed to resolve intractable disputes and circumvent the well-known Verifier’s Dilemma. Experiments show that Lever significantly improves the throughput and reduces expenses of intensive validation with a slight tradeoff in latency. It is also robust to conceivable attacks on validation and performs distinguishable ability to purify Byzantine participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the first round, it is determined by the correctness of VIT.

  2. 2.

    Here, fees are extracted as commissions for backbone confirmation.

References

  1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solida: a blockchain protocol based on reconfigurable byzantine consensus. In: 21st International Conference on Principles of Distributed Systems, pp. 25:1–25:19 (2017)

    Google Scholar 

  2. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68 (2017)

    Google Scholar 

  3. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

    Google Scholar 

  4. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. In: 25th Annual Network and Distributed System Security Symposium (2018)

    Google Scholar 

  5. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2017). Accessed 03 Jan 2018

    Google Scholar 

  6. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the consensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 706–719 (2015)

    Google Scholar 

  7. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable, private smart contracts. In: 27th USENIX Security Symposium, pp. 1353–1370 (2018)

    Google Scholar 

  8. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 949–966 (2018)

    Google Scholar 

  9. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels: payment networks that go faster than lightning. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_30

    Chapter  Google Scholar 

  10. Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: Ace: asynchronous and concurrent execution of complex smart contracts. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 587–600 (2020)

    Google Scholar 

  11. Teustch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017)

    Google Scholar 

  12. Das, S., Ribeiro, V.J., Anand, A.: YODA: enabling computationally intensive contracts on blockchains with byzantine and selfish nodes. In: 26th Annual Network and Distributed System Security Symposium abs/1811.03265 (2019)

    Google Scholar 

  13. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zksnarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE (2018)

    Google Scholar 

  14. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_15

    Chapter  MATH  Google Scholar 

  15. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25

    Chapter  Google Scholar 

  16. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14005, pp. 499–530. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_17

    Chapter  Google Scholar 

  17. Zhang, F., et al.: The ekiden platform for confidentiality-preserving, trustworthy, and performant smart contracts. IEEE Secur. Priv. 18(3), 17–27 (2020)

    Article  Google Scholar 

  18. Frassetto, T., et al.: Pose: practical off-chain smart contract execution. In: 30th Annual Network and Distributed System Security Symposium (2023)

    Google Scholar 

  19. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, distrust, and rationality: smart counter-collusion contracts for verifiable cloud computing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 211–227 (2017)

    Google Scholar 

  20. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation, pp. 173–186 (1999)

    Google Scholar 

  21. Duan, S., Zhang, H.: Foundations of dynamic BFT. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1317–1334 (2022)

    Google Scholar 

  22. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_1

    Chapter  Google Scholar 

  23. Harz, D., Gudgeon, L., Gervais, A., Knottenbelt, W.J.: Balance: dynamic adjustment of cryptocurrency deposits. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1485–1502 (2019)

    Google Scholar 

  24. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  25. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_19

    Chapter  Google Scholar 

  26. Li, W., Andreina, S., Bohli, J.-M., Karame, G.: Securing proof-of-stake blockchain protocols. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 297–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0_17

    Chapter  Google Scholar 

  27. SECBIT: How the winner got Fomo3d prize - a detailed explanation (2018)

    Google Scholar 

  28. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 910–927. IEEE (2020)

    Google Scholar 

  29. Tjiam, K., Wang, R., Chen, H., Liang, K.: Your smart contracts are not secure: investigating arbitrageurs and oracle manipulators in ethereum. In: CYSARM@ CCS, pp. 25–35 (2021)

    Google Scholar 

  30. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Hydrand: efficient continuous distributed randomness. In: 2020 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, pp. 73–89. IEEE Computer Society (2020)

    Google Scholar 

  31. Peng, Z., et al.: Neuchain: a fast permissioned blockchain system with deterministic ordering. Proc. VLDB Endow. 15(11), 2585–2598 (2022)

    Google Scholar 

  32. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration outsourcing for state channels. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT 2019, pp. 16–30. Association for Computing Machinery, New York (2019)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Key R &D Program of China through project 2020YFB1005600, the Natural Science Foundation of China through projects U21A20467, 61932011, 61972019 and Beijing Natural Science Foundation through project M21031 and CCF-Huawei Huyanglin Foundation through project CCF-HuaweiBC2021009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianhong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Wu, Q. (2023). Lever: Making Intensive Validation Practical on Blockchain. In: Meng, W., Yan, Z., Piuri, V. (eds) Information Security Practice and Experience. ISPEC 2023. Lecture Notes in Computer Science, vol 14341. Springer, Singapore. https://doi.org/10.1007/978-981-99-7032-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7032-2_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7031-5

  • Online ISBN: 978-981-99-7032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics