Skip to main content

A Spatial Interpolation Method Based on BP Neural Network with Bellman Equation

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14326))

Included in the following conference series:

  • 459 Accesses

Abstract

Spatial interpolation is a valuable technique that uses the data of a sample set to estimate the property values at unsampled locations. Neural networks for spatial interpolation can capture spatial trends effectively; however, they may not be optimal when a strong local correlation is present, which leads to unreliable outcomes. Neural Network Residual Kriging methods use Kriging to handle residuals, assuming strict conditions such as the stationarity of the random field and stable spatial variability. In many applications without these strict conditions, however, those Neural Network interpolation methods have limitations for obtaining highly accurate estimates. To address this problem, in this paper, we propose a new spatial interpolation method, called NNRB, based on the mechanisms of BP Neural Network with Bellman Equation. Firstly, our NNRB method employs a BP neural network for capturing nonlinear relationships and spatial trends in the data of a sample set. Secondly, NNRB uses Bellman Equation to handle residuals by accounting for interactions between multiple adjacent data and reducing the influence of distant data on the current data. Our NNRB method is utilized for a system of soil testing and formulated fertilization for intelligent agriculture. We compared NNRB with four state-of-the-art interpolation methods, and the results show that our NNRB method outperforms the three methods significantly and is highly competitive with one approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970)

    Article  Google Scholar 

  2. Nurhadiyatna, A., Sunaryani, A., Sudriani, Y., Latifah, A.: 2D spatial interpolation for water quality parameter distribution in Maninjau Lake. In: 2016 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 215–220. IEEE (2016)

    Google Scholar 

  3. Dai, F., Zhou, Q., Lv, Z., Wang, X., Liu, G.: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Ind. 45, 184–194 (2014)

    Article  Google Scholar 

  4. Tziachris, P., Metaxa, E., Papadopoulos, F., Papadopoulou, M.: Spatial modelling and prediction assessment of soil iron using kriging interpolation with pH as auxiliary information. ISPRS Int. J. Geo Inf. 6, 283 (2017)

    Article  Google Scholar 

  5. Viana, D., Barbosa, L.: Attention-based spatial interpolation for house price prediction. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 540–549 (2021)

    Google Scholar 

  6. Tang, Y., et al.: Spatial estimation of regional PM2.5 concentrations with GWR models using PCA and RBF interpolation optimization. Remote Sens. 14, 5626 (2022)

    Article  Google Scholar 

  7. Soto, F., Navarro, F., Díaz, G., Emery, X., Parviainen, A., Egaña, Á.: Transitive kriging for modeling tailings deposits: a case study in southwest Finland. J. Clean. Prod. 374, 133857 (2022)

    Article  Google Scholar 

  8. Le, N.D., Zidek, J.V.: Statistical analysis of environmental space-time processes. Springer, New York (2006). https://doi.org/10.1007/0-387-35429-8

  9. Hecht-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the International Conference on Neural Networks, pp. 11–14. IEEE Press New York, NY, USA (1987)

    Google Scholar 

  10. Lai, Y., et al.: Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network. Sci. Total. Environ. 823, 153770 (2022)

    Article  Google Scholar 

  11. Shahriari, M., Delbari, M., Afrasiab, P., Pahlavan-Rad, M.R.: Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: a case of southeastern Iran. CATENA 182, 104149 (2019)

    Article  Google Scholar 

  12. Li, J., Heap, A.D.: Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw. 53, 173–189 (2014)

    Article  Google Scholar 

  13. Sergeev, A., Buevich, A., Baglaeva, E., Shichkin, A.J.C.: Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA 174, 425–435 (2019)

    Article  Google Scholar 

  14. Zhu, D., Cheng, X., Zhang, F., Yao, X., Gao, Y., Liu, Y.: Spatial interpolation using conditional generative adversarial neural networks. Res. Output Contrib. J. 34, 735–758 (2020)

    Google Scholar 

  15. Luo, P., Song, Y., Zhu, D., Cheng, J., Meng, L.: A generalized heterogeneity model for spatial interpolation. Int. J. Geograph. Inf. Sci. 37, 634–659 (2023)

    Google Scholar 

  16. Lee, M.-H., Chen, Y.J.: Markov chain random field kriging for estimating extreme precipitation at unevenly distributed sites. J. Hydrol. 616, 128591 (2023)

    Google Scholar 

  17. Park, H.I., Lee, S.R.: Evaluation of the compression index of soils using an artificial neural network. Comput. Geotech. 38, 472–481 (2011)

    Article  Google Scholar 

  18. Xavier, A.C., Scanlon, B.R., King, C.W., Alves, A.I.: New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 42, 8390–8404 (2022)

    Article  Google Scholar 

  19. Cui, Z., Lin, L., Pu, Z., Wang, Y.: Graph Markov network for traffic forecasting with missing data. Transp. Res. Part C Emerg. Technol. 117, 102671 (2020)

    Article  Google Scholar 

  20. Vedadi, F., Shirani, S.: A map-based image interpolation method via viterbi decoding of Markov chains of interpolation functions. IEEE Trans. Image Process. 23, 424–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trombini, M., Solarna, D., Moser, G., Dellepiane, S.: A goal-driven unsupervised image segmentation method combining graph-based processing and Markov random fields. Pattern Recogn. 134, 109082 (2023)

    Article  Google Scholar 

  22. Colonnese, S., Rinauro, S., Scarano, G.: Bayesian image interpolation using Markov random fields driven by visually relevant image features. Sig. Process. Image Commun. 28, 967–983 (2013)

    Article  Google Scholar 

  23. Zhu, L., Hou, G., Song, X., Wei, Y., Wang, Y.: A spatial interpolation using clustering adaptive inverse distance weighting algorithm with linear regression. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022. LNCS, Singapore, 6–8 August 2022, Proceedings, Part II, pp. 261–272. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10986-7_21

  24. Liu, F., et al.: Mapping high resolution National Soil Information Grids of China. Sci. Bull. 67(3), 328–340 (2022). https://doi.org/10.1016/j.scib.2021.10.013

  25. Ishitsuka, K., Mogi, T., Sugano, K., Yamaya, Y., Uchida, T., Kajiwara, T.: Resistivity-based temperature estimation of the Kakkonda Geothermal Field, Japan, using a neural network and neural kriging. IEEE Geosci. Remote Sens. Lett. 15, 1154–1158 (2018)

    Article  Google Scholar 

  26. Zhang, C., Luo, L., Xu, W., Ledwith, V.: Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total. Environ. 398, 212–221 (2008)

    Article  Google Scholar 

  27. Peli, R., Menafoglio, A., Cervino, M., Dovera, L., Secchi, P.: Physics-based Residual Kriging for dynamically evolving functional random fields. Stoch. Env. Res. Risk Assess. 36, 3063–3080 (2022)

    Article  Google Scholar 

  28. Agyeman, P.C., Kingsley, J., Kebonye, N.M., Khosravi, V., Borůvka, L., Vašát, R.: Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging. Environ. Pollut. 316, 120697 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyang Wei or Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, L., Wei, H., Song, X., Wei, Y., Wang, Y. (2024). A Spatial Interpolation Method Based on BP Neural Network with Bellman Equation. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14326. Springer, Singapore. https://doi.org/10.1007/978-981-99-7022-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7022-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7021-6

  • Online ISBN: 978-981-99-7022-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics