Skip to main content

Dynamic Spatial-Temporal Dual Graph Neural Networks forĀ Urban Traffic Prediction

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 554 Accesses

Abstract

Accurate traffic prediction is a crucial aspect of intelligent transportation systems. However, existing methods typically rely on static graphs to learn correlations between different sensor in space, which ignores dynamic impact of latent factors on topology of the road network. To address this issue, we propose a traffic flow prediction method based on a dynamic spatial-temporal dual graph neural network that extracts deeper and finer-grained features from traffic data. Firstly, we propose a new data-driven strategy based on a dynamic spatial-temporal-aware graph to replace the commonly used predefined static graph in traditional graph convolutional networks. This strategy enables us to collect edge attributes (geographical proximity) and node attributes (spatial heterogeneity) between nodes. Secondly, we introduce the duality principle to construct the dual hypergraph of the traffic graph, which captures the correlations between edges of the traffic graph. In the process of dynamic graph convolutional iteration, we capture the dependencies between dynamic edge attributes and static node attributes on the basis of merging spatial relationships. Finally, an improved multi-head attention mechanism designed to represent dynamic spatial correlations. We conducted experiments on two real-world traffic prediction tasks, results demonstrate our method outperforms others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Guan, W.: A summary of traffic flow forecasting methods. J. Highw. Transp. Res. Dev. 21(3), 82ā€“85 (2004)

    MathSciNetĀ  Google ScholarĀ 

  2. Han, L., Du, B., Sun, L., et al.: Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 547ā€“555 (2021)

    Google ScholarĀ 

  3. Ta, X., Liu, Z., Hu, X., et al.: Adaptive spatio-temporal graph neural network for traffic forecasting. Knowl. Based Syst. 242(22), 180ā€“199 (2022)

    Google ScholarĀ 

  4. Lan, S., Ma, Y., Huang, W., et al.: DSTAGNN: dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In: International Conference on Machine Learning, pp. 11906ā€“11917. PMLR (2022)

    Google ScholarĀ 

  5. Zheng, Q.: Dynamic spatial-temporal adjacent graph convolutional network for traffic forecasting. IEEE Trans. Big Data 21(3), 82ā€“85 (2022)

    MathSciNetĀ  Google ScholarĀ 

  6. Xu, H., Zou, T., Liu, M., et al.: Adaptive spatiotemporal dependence learning for multi-mode transportation demand prediction. IEEE Trans. Intell. Transp. Syst. 23(10), 18632ā€“18642 (2022)

    ArticleĀ  Google ScholarĀ 

  7. Kim, D., Cho, Y., Kim, D., et al.: Residual correction in real-time traffic forecasting. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 962ā€“971 (2022)

    Google ScholarĀ 

  8. Ji, J., Wang, J., Huang, C., et al.: Spatio-temporal self-supervised learning for traffic flow prediction. arXiv preprint arXiv:2212.04475 (2022)

  9. Shao, Z., Zhang, Z., et al.: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 167ā€“177 (2022)

    Google ScholarĀ 

  10. Li, F., Feng, J., Yan, H., et al.: Adaptive spatiotemporal dependence learning for multi-mode transportation demand prediction. ACM Trans. Knowl. Discov. Data 17(1), 1ā€“21 (2023)

    Google ScholarĀ 

  11. Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  12. Li, Y., Shahabi, C.: A brief overview of machine learning methods for short-term traffic forecasting and future directions. SIGSPATIAL Spec. 10(1), 3ā€“9 (2018)

    ArticleĀ  Google ScholarĀ 

  13. Zhang, J., Zheng, Y., Qi, D., et al.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1ā€“4 (2016)

    Google ScholarĀ 

  14. Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  15. Zhao, L., Song, Y., Zhang, C., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848ā€“3858 (2019)

    ArticleĀ  Google ScholarĀ 

  16. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  17. Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on AI, vol. 35, no. 5, pp. 4189ā€“4196 (2021)

    Google ScholarĀ 

  18. Bai, S., Kol, Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  19. Zhou, H., Zhang, S., Peng, J., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 11106ā€“11115 (2021)

    Google ScholarĀ 

  20. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664ā€“672 (2003)

    ArticleĀ  Google ScholarĀ 

  21. Lin, Z., Feng, J., Lu, Z., et al.: DeepSTN+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 1020ā€“1027 (2019)

    Google ScholarĀ 

  22. Yao, H., Tang, X., Wei, H., et al.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 5668ā€“5675 (2019)

    Google ScholarĀ 

  23. Xu, J.: Multi-task travel route planning with a flexible deep learning framework. IEEE Trans. Intell. Transp. Syst. 22(7), 3907ā€“3918 (2020)

    MathSciNetĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 62176088), the Key Science and Technology Research Project of Henan Province of China (Grant No. 22102210067, 222102210022), and the Program for Science & Technology Development of Henan Province (No. 212102210412 and 202102310198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L. et al. (2024). Dynamic Spatial-Temporal Dual Graph Neural Networks forĀ Urban Traffic Prediction. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics